• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Gravitation als Linse – Lichtablenkung am Rand der Sonne

Unterrichtseinheit
14,99 €

Diese Unterrichtseinheit thematisiert die Sonnenfinsternis-Expedition im Jahre 1919, welche die Lichtablenkung von Sternenlicht am Rand der Sonne vermessen konnte. Damit gelang eine erste experimentelle Bestätigung der Allgemeinen Relativitätstheorie, was Alberst Einstein zu großer Popularität verhalf. Fast 100 Jahre später stand die Relativitätstheorie erneut im Fokus öffentlichen Interesses, denn mit dem direkten Nachweis von Gravitationswellen konnte eine weitere, wichtige Vorhersage der Theorie betätigt werden. Die Materialien nehmen Bezug auf ein Erklärvideo aus der Mediathek der Lindauer Nobelpreisträgertagungen (Mini-Lectures). Zu diesem Video wurden zwei weitere Unterrichtseinheiten ausgearbeitet, welche die erste indirekte Bestätigung von Gravitationswellen mithilfe eines Pulsars (1974) sowie den ersten direkten Nachweis dieser Wellen mithilfe von Laser-Interferometern (2015) zum Inhalt haben. Die Unterrichtseinheit nimmt die historischen Sonnenfinsternis-Expeditionen von 1919 (Principe und Sobral) als Ausgangspunkt, um ein zentrales Phänomen moderner Physik und Astronomie zu untersuchen: die Ablenkung von Sternenlicht im Gravitationsfeld der Sonne. Die Lernenden verstehen, warum diese Messkampagne als Entscheidungsexperiment gilt: Während die klassische Physik nach Newton grundsätzlich eine Lichtablenkung nahe großer Massen erwartet, sagt die Allgemeine Relativitätstheorie eine deutlich stärkere Ablenkung voraus. Genau diese Differenz macht die Expedition wissenschaftlich so bedeutsam. Im Zentrum steht nicht nur das "Was", sondern das "Wie" wissenschaftlicher Erkenntnis: Die Schülerinnen und Schüler recherchieren Hintergründe, Ablauf und Ergebnisse der Expedition, ordnen Quellen ein und arbeiten heraus, welche Rolle Messbedingungen, Auswertung und Unsicherheiten spielen. Darauf aufbauend leiten sie zunächst die klassische Betrachtung her und berechnen anschließend die erwarteten Ablenkwinkel nach Newton und nach der relativistischen Näherungsformel. So wird sichtbar, wie klein der Effekt tatsächlich ist – und warum die damalige Messung trotz ihrer Eleganz methodisch anspruchsvoll bleibt. Ein weiterer Schwerpunkt liegt auf der quantitative Auswertung: Mit Hilfe der Fernrohrbrennweite bestimmen die Lernenden Abbildungsmaßstäbe, berechnen die zu erwartende Verschiebung auf der Fotoplatte und werten Messdaten zu Sternpositionen grafisch aus. Abschließend diskutieren sie die Aussagekraft der Ergebnisse im Hinblick auf die Eingangshypothese und reflektieren, was ein "Beleg" in den Naturwissenschaften bedeutet. Als anschauliche Ergänzung wird das Gummituch-Modell genutzt, um die Idee der Raumzeitkrümmung und die "Linsenwirkung" von Massen niedrigschwellig zu visualisieren. Über den Einstieg mit einem Video zu Gravitationswellen wird zudem eine Brücke zu späteren Bestätigungen der Relativitätstheorie geschlagen und die Einheit in einen größeren physikalischen Kontext eingebettet. Die im Jahr 1919 durchgeführten Sonnenfinsternis-Expeditionen nach Principe (Westafrika) und Sobral (Brasilien) hatten den Charakter eines "Experimentum Crucis" – eines Entscheidungsexperiments. Auch die klassische Physik nach Newton sagt eine Ablenkung eines Lichtstrahls voraus, wenn dieser dicht an einer großen Masse, wie zum Beispiel die der Sonne, vorbeigeht. Einstein konnte aber aus seiner Allgemeinen Relativitätstheorie 1915 ausrechnen, dass die Lichtablenkung (in erster Näherung) doppelt so groß sein müsste, wie sie sich aus der klassischen Physik ergibt. Die experimentelle Bestimmung des Ablenkwinkels sollte also entscheiden, ob die Relativitätstheorie die allgemeingültige Beschreibung von Gravitation darstellt. Vom Standpunkt der Physikdidaktik stellt die damalige Situation ein Paradebeispiel dar, wie wissenschaftliche Erkenntnisse gewonnen und abgesichert werden. Die Materialien zu dieser Unterrichtseinheit sollen dies widerspiegeln. Die Idee, die Lichtablenkung mithilfe der Verschiebung der Sternpositionen bei einer Sonnenfinsternis nachzuweisen, ist bestechend einfach – die Durchführung allerdings aufgrund der extrem kleinen Effekte äußerst schwierig. Auch diese Problematik wird in den Arbeitsblättern thematisiert, indem die Lernenden berechnen, wie groß die Verschiebungen der Sternpositionen auf den Fotoplatten nach Einstein tatsächlich sein sollten. Nur so lässt sich ermessen, wie schwierig die Auswertung und Interpretation der Messungen seinerzeit waren. Methodische Analyse Ein Erklär-Plakat, das 1919 in einer populären Zeitschrift ( Illustrated London News) die physikalischen Hintergründe und Zusammenhänge der Expedition darstellte, dient den Schülerinnen und Schülern als Anlass, Informationen über die damalige Forschungsreise zu sammeln und zusammenzustellen. Aus heutiger Sicht ist es erstaunlich, wie gut man damals bereits in der Lage war, Wissenschaft journalistisch aufzuarbeiten und den Bürgern näher zu bringen. Im Weiteren rechnen die Lernenden den Ablenkwinkel am Sonnenrand konkret aus und werten die Positionen von sieben Sternen, die auf den Fotoplatten sichtbar wurden graphisch aus, um dann eine Entscheidung für oder wider die Hypothese von Einstein treffen zu können. Vorkenntnisse Die Lernenden sollten das Gravitationsgesetz von Newton kennen. Die Formel für die Lichtablenkung ist nicht schwierig und wird fertig angegeben. Allerdings stellt der Umgang mit den unterschiedlichen Begriffen bei der Berechnung von Winkeln (Bogensekunden, Grad, Radiant, Bogenmaß) die Schülerinnen und Schüler erfahrungsgemäß vor Probleme. Daher werden verhältnismäßig große Vorgaben diesbezüglich in den Materialien gemacht. Vermutlich ist aber auch Lehrkräfterhilfe an der einen oder anderen Stelle sinnvoll und notwendig. Fachkompetenz Die Schülerinnen und Schüler… erkennen, dass die Allgemeine Relativitätstheorie von der klassischen Physik abweicht, sobald die gravitativ wirkenden Massen groß oder die Abstände zu diesen klein werden. berechnen physikalische Größen. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler… können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben, sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form (Internet) nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Paar- oder Gruppenarbeit. diskutieren in Paar- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Paar- und Gruppenarbeit angemessen und verständlich im Plenum dar.

  • Physik / Astronomie
  • Sekundarstufe II

Gravitation schwarzer Löcher: Lichtablenkung

Unterrichtseinheit
14,99 €

Schwarze Löcher sind nicht vollständig unsichtbar, denn sie beeinflussen durch ihre extreme Gravitationswirkung das Licht in ihrer unmittelbaren Umgebung. Wie erscheint der beobachtenden Person die hell leuchtende Materie, die um ein solches Schwerkraftmonster kreist? Das erste Arbeitsblatt thematisiert die Herleitung des Schwarzschildradius (Ereignishorizont) eines Schwarzen Lochs. Die Lernenden wenden die Formel dann auf die Erde, die Sonne und das supermassive Schwarze Loch im Zentrum der Milchstraße an. Aus Science-Fiction Filmen wie "Interstellar" sind simulierte Bilder von Schwarzen Löcher bekannt. Dabei wird meist das verzerrte Abbild der Akkretionsscheibe gezeigt – extrem heißes, hell leuchtendes Gas und Staub umkreisen das Schwarze Loch mit großer Geschwindigkeit. In der Mitte ist dann der sogenannte "Schatten des Schwarzen Lochs" zu erkennen. Inzwischen wurden sogar zwei reale Bilder supermassiver Schwarzer Löcher der Öffentlichkeit präsentiert – 2019 der Schatten des Schwarzen Lochs im Zentrum der Galaxie M87 und 2022 das Schwarze Loch im Zentrum der Milchstraße. Das zweite Arbeitsblatt dieses Beitrags thematisiert die Wirkung der Gravitation auf die Ausbreitung des Lichts der Akkretionsscheibe. Die Lernenden erarbeiten, wie sich die Akkretionsscheibe der beobachtenden Person optisch präsentiert und welche Radien außer dem Schwarzschildradius dabei eine Rolle spielen. Themen aus der Astronomie, speziell wenn es dabei um Schwarze Löcher geht, stoßen bei Schülerinnen und Schülern in der Regel auf sehr großes Interesse. Der Mechanik-Unterricht der Oberstufe bietet gute Möglichkeiten, diese Themen aufzugreifen, beispielsweise dann, wenn es im Unterricht um Fragen zur Gravitation geht. Die physikalischen und astronomischen Erkenntnisse bezüglich des Schwarzen Lochs im galaktischen Zentrum sind wissenschaftlich topaktuell und werden in den kommenden Jahren an Umfang und Präzision weiter zunehmen. Die Herleitung des Schwarzschildradius erfolgt eigentlich aus der Allgemeinen Relativitätstheorie. Interessanterweise gelingt die Herleitung auch klassisch, wobei die Lichtgeschwindigkeit als absolute Grenzgeschwindigkeit eingeht. Die Berechnungen der Ereignishorizonte verschiedener Himmelsobjekte liefert überraschende Ergebnisse und bietet Anlass für Diskussion und Nachfragen. Allerdings sollte man im Unterricht unbedingt darauf hinweisen, dass die Herleitung des Ereignishorizonts von einem perfekt kugelsymmetrischen, nichtrotierenden Schwarzen Loch ausgeht. Dies ist in der Realität aber nicht der Fall. Vielmehr rotieren Schwarze Löcher teilweise mit erheblicher Geschwindigkeit um ihre eigene Achse. Bei einem massenreichen Stern wird nämlich in der Phase des Kollaps Drehimpuls auf das entstehende stellare Schwarze Loch übertragen. Der Ereignishorizont solcher rotierenden Schwarzen Löcher wird dann nicht mehr mit der Schwarzschild-Metrik berechnet, sondern mit der sogenannten Kerr-Metrik – benannt nach dem Astrophysiker Roy Kerr, der seine Theorie 1963 veröffentlichte. Die Rotation eines Schwarzen Lochs verzerrt die Raumzeit-Geometrie zusätzlich, was zu leicht asymmetrischen Wirkungen auf Licht und Materie in unmittelbarer Umgebung des Schwarzen Lochs führt. Im schulischen Kontext ist jedoch eine quantitative Behandlung der Kerr-Metrik kaum möglich. Um den Lernenden eine anschauliche Vorstellung von den Lichtwegen in der Nähe von Schwarzen Löchern und der Entstehung der verzerrten Abbilder ihrer Umgebungen zu ermöglichen, steht ihnen eine Computersimulation zur Verfügung. So werden Begriffe wie "Photonenradius" und "Schatten des Schwarzen Lochs" zugänglich und besser verständlich. Fachkompetenz Die Schülerinnen und Schüler… verwenden die Formel der Zentripetalkraft und der zweiten kosmischen Geschwindigkeit, um den Schwarzschildradius eines Schwarzen Lochs herzuleiten. berechnen Schwarzschildradien von Erde, Sonne und Sagittarius A. wenden eine Computersimulation an, um die Lichtwege in der Umgebung eines Schwarzen Lochs abzubilden und die Entstehung und Bedeutung von Schatten und Photonenradius im Abbild eines Schwarzen Lochs zu verstehen. Medienkompetenz Die Schülerinnen und Schüler… können Texte in gedruckter und digitaler Form auf bestimmte Fragestellungen hin untersuchen. erarbeiten die relevanten Informationen heraus. arbeiten mit einer Computersimulation. Sozialkompetenz Die Schülerinnen und Schüler… arbeiten konstruktiv und kooperativ in Paar- oder Gruppenarbeit. diskutieren in Paar- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Paar- und Gruppenarbeit angemessen und verständlich im Plenum dar.

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE