• Schulstufe
    • Häkchen-Symbol
    • Häkchen-Symbol
  • Klassenstufe
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
  • Schulform
    • Häkchen-Symbol
    • Häkchen-Symbol
    • Häkchen-Symbol
  • Fach
    • Häkchen-Symbol
  • Materialtyp
    • Häkchen-Symbol
  • Quelle1
    zurücksetzen
    • Häkchen-Symbol
Sortierung nach Datum / Relevanz
Kacheln     Liste

Materialsammlung Kernphysik

Unterrichtseinheit

Auf dieser Seite haben wir Unterrichtsmaterialien zum Thema Kernphysik zusammengestellt. Zu den vier Unterthemen "Kernaufbau und Kerneigenschaften", "Natürliche und künstliche Radioaktivität", "Kernreaktionen" und "Kernspaltung und Kernfusion" finden Sie jeweils kurze Beschreibungstexte sowie passgenaue Unterrichtsvorschläge. Kernphysik ist der Zweig der Physik, der Aufbau, Struktur und auftretende Wechselwirkungen von und in Atomkernen beschreibt. Sie unterscheidet sich von der Atomphysik , die sich mit den vielfältigen Abläufen in der Atomhülle und den darin enthaltenen (negativ geladenen) Elektronen beschäftigt. Einteilen kann man die Kernphysik in die Teilbereiche Kernaufbau und Kerneigenschaften, Radioaktivität, Kernreaktionen sowie Kernspaltung und Kernfusion. Kernaufbau und Kerneigenschaften Die mit energiereichen α -Teilchen durchgeführten Streuversuche des neuseeländischen Physikers Ernest Rutherford (1871–1937) brachten im Jahr 1911 zutage, dass Atome keine homogenen und unteilbaren Massekugeln sind, sondern aus einem positiv geladenen Atomkern (Durchmesser je nach Teilchenzahl in der Größenordnung von 10 -15 m) und einer negativ geladenen Atomhülle (Größenordnung von 10 -10 m) bestehen. Dieser Atomkern setzt sich aus Protonen und Neutronen zusammen, die man als Nukleonen bezeichnet. Deren Massen liegen in der Größenordnung von 10 -27 kg; die Protonen tragen eine positive elektrische Ladung , während die Neutronen keine elektrische Ladung besitzen. Experimente in den 60er Jahren des 20. Jahrhunderts mit Teilchenbeschleunigern zeigten, dass Protonen und Neutronen jeweils aus zwei noch kleineren Teilchen aufgebaut sind – den sogenannten Quarks , die ihrerseits nach Up-Quarks und Down-Quarks unterschieden werden. So besteht ein Proton aus zwei Up-Quarks und einem Down-Quark, während ein Neutron aus einem Up-Quark und zwei Down-Quarks besteht. Mithilfe von Kernmodellen wie dem Potentialtopfmodell, Tröpfchenmodell und dem Schalenmodell werden die Abläufe im Atomkern unter Einbeziehung der Quantenphysik beschrieben. Natürliche und künstliche Radioaktivität Ein weites Feld bei der Beschreibung der Vorgänge im Atomkern nimmt die Radioaktivität ein. Die naturgegebene Radioaktivität tritt als radioaktive Strahlung – bis auf wenige Ausnahmen wie Kohlenstoff C-14 – bei schweren Atomkernen auf und kann vom Menschen nicht beeinflusst werden. Im Gegensatz dazu ist es aber auch möglich Radionuklide (Atome gleicher Protonenzahl, aber unterschiedlicher Neutronenzahl) durch Bestrahlung von Atomkernen mit Protonen, Neutronen oder Alphateilchen zu erzeugen – dann spricht man von künstlicher Radioaktivität . Radioaktivität tritt auf in Form von Alpha -, Beta- und Gamma-Strahlung und folgt dem radioaktiven Zerfallsgesetz . Mithilfe dieser Gesetzmäßigkeit können sowohl Altersbestimmungen nach der C-14 Methode oder der Uran-Blei-Methode als auch die Messung der Durchdringungsfähigkeit radioaktiver Strahlen durchgeführt werden. Die große Gefahr der radioaktiven Strahlung durch lebensbedrohliche Strahlungsdosen auf den Menschen ist in erster Linie der künstlichen radioaktiven Strahlung geschuldet – wie etwa durch Austritt von Radioaktivität bei Unfällen in Kernreaktoren (Tschernobyl 1986, Fukushima 2011) oder durch den Abwurf von Kernspaltungsbomben (im 2. Weltkrieg 1945 auf Hiroshima und Nagasaki) sowie ebenfalls zu Versuchszwecken bereits erfolgte Abwürfe von Wasserstoff-Fusionsbomben (zum Beispiel 1962 auf der russischen Insel Nowaja Semlja oder dem Bikini-Atoll etwa 3000 km nordöstlich von Neuguinea). Gleichzeitig macht die Nuklearmedizin mit verfeinerten und für den Patienten zusehens besser zu vertragenden Diagnose- und Therapiemethoden in Hinblick auf Anwendung radioaktiver Substanzen und kernphysikalischer Verfahren immer größere Fortschritte. So verfügt die nuklearmedizinische Diagnostik mit der Positronen-Emissions-Tomographie (PET) sowie der Szintigrafie über Verfahren, die einen sehr präzisen Einblick in den menschlichen Körper erlauben. Zudem können in der Strahlenbehandlung von Krebspatienten – etwa durch die Protonen- und Schwerionentherapie – mittlerweile punktgenaue Strahlendosen auf den entarteten Tumor abgegeben werden, die das den Tumor umgebende Gewebe weitgehend verschonen können. Kernreaktionen Unter einer Kernreaktion versteht man einen physikalischen Prozess, bei dem ein Atomkern durch den Zusammenstoß mit einem anderen Atomkern oder einem freien Teilchen – wie etwa einem Neutron – entweder in mindestens ein neues Atom oder in freie Nukleonen umgewandelt wird. Dabei ändern Atomkerne durch Aufnahme oder Abgabe von Teilchen ihre atomare Zusammensetzung, wobei die Gesamtzahl der an der Reaktion beteiligten Nukleonen stets erhalten bleibt. Der radioaktive Zerfall zählt nicht zu den Kernreaktionen, weil in diesen Fällen die Reaktion nicht durch einen Zusammenstoß ausgelöst wird , sondern spontan – also nicht vorhersehbar – erfolgt. Kernspaltung und Kernfusion Zu den Kernreaktionen zählen sowohl der durch langsame Neutronen ausgelöste Prozess der Kernspaltung als auch der seit Jahrmilliarden in der Sonne bei Temperaturen von etwa 15 Millionen Grad ständig stattfindende Ablauf der Kernfusion . Bei beiden Formen tritt gemäß der Einsteinschen Masse-Energie-Äquivalenz ein sogenannter Massendefekt auf, der dazu führt, dass bei jedem der beiden Prozesse Energie freigesetzt werden kann. Während die im Jahr 1939 von Otto Hahn (1879–1968) und seinen Mitarbeitern entdeckte Kernspaltung in Deutschland bereits seit 1960 durch Kernreaktoren Energie liefert, befindet sich die Kernfusionstechnik auch im Jahr 2021 nach wie vor im Forschungsstadium. Im Gegensatz zur militärischen Forschung, die mit der Wasserstoffbombe (H-Bombe) schon Mitte des 20. Jahrhunderts eine vernichtende Fusionsbombe entwickelt hatte, ist es trotz der immens aufwendigen Forschungsreaktoren ITER, JET und Wendelstein bis heute noch nicht gelungen, die für die Fusion in einem Reaktor notwendigen Bedingungen bei Temperaturen von 100 bis 150 Millionen Grad für einen kommerziellen Reaktor zu realisieren.

  • Physik / Astronomie
  • Sekundarstufe II

Der Tunneleffekt – ein Phänomen der Quantenphysik

Unterrichtseinheit
5,99 €

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler der Sekundarstufe II den Tunneleffekt kennen. Dieser ist ein Phänomen der Quantenphysik, bei dem ein Quantenobjekt – wie etwa ein Elektron oder ein Alphateilchen – eine Potentialbarriere mit einer bestimmten Wahrscheinlichkeit durchqueren (durchtunneln) kann, die es nach den physikalischen Gesetzen der klassischen Physik nicht überwinden könnte. Dieser sogenannte Tunneleffekt spielt zum Beispiel eine entscheidende Rolle beim Alphazerfall, einem typischen Phänomen der Kernphysik. Ausgehend von bereits erworbenen Kenntnissen zum wellenhaften Verhalten von Quantenobjekten werden Schülerinnen und Schüler durch einfache Versuche mit Wasserwellen an das Phänomen "Tunneleffekt" herangeführt. Übertragen auf Elektronen oder Alphateilchen beschreibt deren Wellenfunktion die Wahrscheinlichkeit, wo sie sich befinden. Diese Wellenfunktion erstreckt sich nicht nur auf den Bereich der Potentialbarriere, sondern auf beiden Seiten auch darüber hinaus. Dies bedeutet, dass es eine gewisse berechenbare Wahrscheinlichkeit gibt, die Quantenobjekte außerhalb der Potentialbarriere zu finden – ohne eine theoretisch benötigte klassische Energie haben zu müssen. Für die entsprechende Wahrscheinlichkeit gilt, dass sie von der Breite und Höhe der Potentialbarriere abhängt: Eine dünnere oder niedrigere Barriere erhöht die Wahrscheinlichkeit des Tunnelns deutlich! Betrachtet man die Verhältnisse im Atomkern, so wird dieser durch die Kernkraft stabil gehalten. Ein α-Teilchen im Inneren des Kerns müsste demzufolge durch die Coulombbarriere vom Austritt aus dem Kern abgehalten werden beziehungsweise es müsste eine sehr hohe Energie haben, um die Barriere zu überwinden – diese hat sie aber nicht! Nach klassischer Sicht wäre das Alphateilchen also für immer im Kern gefangen. Für den Unterricht sollten Lehrkräfte gut vorbereitet sein, um dieses klassisch nicht erklärbare Phänomen mithilfe der Besonderheiten der Quantenphysik verständlich zu machen. Vorkenntnisse Physikalische Vorkenntnisse von Lernenden können vorausgesetzt werden, wenn im Rahmen der Kursphase in der Sek II vorher das Verhalten von Wahrscheinlichkeitswellen bis hin zur Schrödingergleichung einschließlich entsprechender Berechnungen unterrichtet wurde. Didaktische Analyse Die Behandlung des schwierigen Stoffes zur quantenphysikalischen Erklärung des mit der klassischen Physik nicht beschreibbaren Verhaltens von Quantenobjekten führt die Schülerinnen und Schüler in eine Welt des Allerkleinsten ein, die sich dem logischen Verständnis des menschlichen Vorstellungsvermögens weitgehend entzieht – aber sehr hilfreich ist in Hinblick auf das Verständnis für die Komplexität unserer Natur! Methodische Analyse Das Thema Tunneleffekt dürfte bei den interessierten Lernenden durchaus auf hohes Interesse stoßen; durch ein großes Angebot an Medien mit entsprechendem anschaulichen Material ist es vorstellbar, bei entsprechender Freude an nicht immer einfachen mathematischen Herleitungen sich in das Thema zu vertiefen. Fachkompetenz Die Schülerinnen und Schüler können die Grundgedanken, die zum Tunneleffekt führen, beschreiben und erläutern. wissen um die Bedeutung des Tunneleffektes als besonderes Phänomen der Quantenphysik. können Berechnungen anstellen und die Ergebnisse erläutern. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern, im Freundeskreis diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

E=mc² – Äquivalenz von Masse und Energie

Unterrichtseinheit
5,99 €

Die Unterrichtseinheit zum Thema "Äquivalenz von Masse und Energie" beschäftigt sich mit der vielleicht bedeutendsten Entdeckung von Albert Einstein im Jahr 1905. Im Rahmen seiner Herleitungen zur Speziellen Relativitätstheorie hat er die vermutlich berühmteste und bekannteste Formel der Physikgeschichte abgeleitet: E=m×c². Diese einfach aussehende Formel wurde für die Physik des 20. Jahrhunderts - und darüber hinaus - von fundamentaler Bedeutung. So hat sie es ermöglicht, zum einen die Vorgänge in der Sonne bei ihrer Energieerzeugung mit der bisher noch nicht realisierten Anwendung zur Energieproduktion auf der Erde zu erklären, zum anderen die im Jahr 1938 von Otto Hahn und seinen Mitarbeitern entdeckte Kernspaltung zur Energiegewinnung in Atomkraftwerken zu nutzen. Die berühmte Formel sollte auch Schülerinnen und Schülern "bekannt" sein, wenngleich die Tragweite der einfach aussehenden Formel nur den wenigsten geläufig sein dürfte. Die Herleitung der Formel über die bereits bekannten Fakten der Speziellen Relativitätstheorie wird für viele Lernenden eine große Herausforderung sein, der nur die mathematisch Versiertesten problemlos werden folgen können. Die Äquivalenz von Masse und Energie ist aber für das Verständnis vieler physikalischen Vorgänge so wichtig, dass man die Herleitung mit einem gut nachvollziehbaren Endergebnis trotzdem durchführen sollte. Äquivalenz von Masse und Energie Die im Rahmen der Speziellen Relativitätstheorie besprochene Äquivalenz von Masse und Energie mit der schon seit Jahrzehnten realisierten Energieerzeugung durch Kernspaltung und der mit Hochdruck beforschten Energieerzeugung durch Kernfusion (Stichwort ITER) wird auch in den Unterrichtseinheiten zur Kernphysik von grundlegender Bedeutung werden - und aufgrund der ungelösten Probleme mit der Lagerung der dabei entstehenden (langlebigen) radioaktiven Folgeprodukte für viel Diskussion sorgen. Für den Unterricht sollten Lehrkräfte deshalb gut vorbereitet sein, um auf kritische Fragen das Für und Wider dieser Formen der Energieerzeugung sachkompetent erklären zu können. Vorkenntnisse Grobe Vorkenntnisse von Lernenden können in gewisser Weise vorausgesetzt werden, da die Thematik aufgrund der berühmten Formel ansatzweise bekannt sein wird. Konkrete Kenntnisse sind jedoch nicht zu erwarten, weil dazu das physikalische Wissen um die Vorgänge in der Speziellen Relativitätstheorie kaum bekannt und somit erst herzuleiten ist. Didaktische Analyse Bei der Behandlung des Themas sollte man die Schülerinnen und Schüler darauf hinweisen, dass trotz des sowohl bei Kernspaltung als auch Kernfusion auftretenden radioaktiven Gefährdungspotentiales diese Art der Energieerzeugung klimaneutral abläuft, ohne die Umwelt mit Schadstoffen zu belasten. Im Rahmen des Unterrichts kann gut gezeigt werden, dass die Masse-Energie-Äquivalenz im Alltagsleben kaum bemerkt werden wird, aber trotzdem bei jeder Energieumwandlung auftritt. Deshalb ist es sehr wichtig, den Lernenden zu vermitteln, welche Bedeutung der berühmten Formel im atomaren Bereich zukommt – in der Forschung (zum Beispiel am CERN in Genf), in der Energieerzeugung, aber auch in der gigantischen Energiefreisetzung bei Kernwaffen. Fachkompetenz Die Schülerinnen und Schüler wissen um die weitreichende Bedeutung der speziellen Relativitätstheorie und dem daraus abgeleiteten Prinzip der Äquivalenz von Masse und Energie. können nachvollziehen, wie man die Formel E=m×c² herleitet. kennen die unterschiedlichen Möglichkeiten zur Energieerzeugung infolge der Äquivalenz von Masse und Energie. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit den anderen Lernenden, Eltern, Freunde wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Atomphysik – Kernumwandlungen

Unterrichtseinheit

Mithilfe von interaktiven Arbeitsblättern und Animationen setzen sich Schülerinnen und Schüler mit dem Lernbereich "Kernumwandlungen – Nutzen und Gefahren" in Einzel- oder Partnerarbeit auseinander.Beim Einstieg in die Thematik wird auf die Entwicklung der wichtigsten Atommodelle eingegangen. Die Bildung von Ionen und Isotopen spielt dabei als Grundlage für die folgenden Themen eine wichtige Rolle. Den zweiten Schwerpunkt bilden der Spontanzerfall und die Freisetzung von radioaktiver Strahlung. Die künstlichen Kernumwandlungen werden mittels Computeranimationen erklärt. Zum Abschluss werden Kenntnisse zur gesteuerten und ungesteuerten Kettenreaktion vermittelt. Dieser Zusammenhang kann ebenfalls in Form von Computeranimationen veranschaulicht und interaktiv bearbeitet werden. Einsatz im Unterricht Der Einsatz der Sammlung von interaktiven Übungen und 3D-Animationen zur Atomphysik sollte unterrichtsbegleitend erfolgen. Nach der Behandlung des jeweiligen Themas im Unterricht (Arbeitsblätter als Word-Dokumente im Download-Paket "atomphysik_materialien.zip") können Übungsphasen im Computerkabinett den Unterricht lebendiger gestalten und zur Binnendifferenzierung genutzt werden. Die Verwendung der 3D-Animationen soll dabei die Anschaulichkeit erhöhen und die Visualisierung der Aufgabenstellung gerade bei den "unsichtbaren" Sachverhalten im submikroskopischen Bereich vereinfachen. Hinweise zur Nutzung der interaktiven Arbeitsblätter In der Klassenstufe 9 hat sich der Einsatz des Beamers bewährt, wenn die Schülerinnen und Schüler die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt waren. Für die Eingaben in die Formularfelder der interaktiven Übungen sollte ein Hinweis auf die Notwendigkeit einer korrekten Schreibweise erfolgen. Dies führt zu erhöhter Konzentration und weniger Frusterlebnissen, wenn Fragen inhaltlich richtig, aber infolge falscher Rechtschreibung als falsch beantwortet wurden. Auch Partnerarbeit von Lernenden mit guten Deutschkenntnissen zusammen mit Schülerinnen und Schülern, welchen die deutsche Sprache schwer fällt (Integrationskinder), ist hier gut möglich. Technische Hinweise Um die 3D-Modelle öffnen zu können, ist ein VRML-Plugin nötig. Alle animierten GIFs und interaktiven 3D-Animationen der verwendeten Übungen wurden vom Autor der Unterrichtseinheit mithilfe des 3D-CAD-Programmes FluxStudio erzeugt. Dieses Programm ist für die pädagogische Arbeit als Freeware verfügbar.Die Schülerinnen und Schüler sollen Atommodelle kennen. die alpha-, beta und gamma-Strahlung kennen. künstliche Kernumwandlungen kennen. das Aufstellen von Zerfallsgleichungen beherrschen. erkennen, dass der Unterschied zwischen gesteuerter und ungesteuerter Kettenreaktion für die Nutzung der Kernenergie immens wichtig ist.

  • Physik / Astronomie
  • Sekundarstufe I
ANZEIGE
Zum Link