• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Materialsammlung Elektrizitätslehre

Unterrichtseinheit

In dieser Materialsammlung für den Physik-Unterricht sind Unterrichtsmaterialien rund um die Elektrizitätslehre und ihre Teilbereiche gebündelt. Dazu zählen elektrische Ladungen und Strom, elektrische und magnetische Felder, die elektromagnetische Induktion, elektromagnetische Schwingungen und Wellen sowie Grundlagen der Elektronik. Die Elektrizitätslehre umfasst alle Vorgänge, die entweder mit ruhender Ladung (Elektrostatik) oder bewegter Ladung (Elektrodynamik) zu tun haben. Der Begriff selbst leitet sich aus dem griechischen Wort electron (deutsch: Bernstein) ab. Er geht zurück auf den griechischen Naturwissenschaftler und Philosoph Thales von Milet, der mit Bernstein vor etwa 2500 Jahren Versuche durchgeführt und dabei beim Reiben von Bernstein festgestellt hat, dass dieser kleine leichte Teilchen anziehen kann. Lernziele und Lehrplanbezüge für die Elektrizitätslehre im Fach Physik Elektrische Ladungen sind Bestandteile von Atomen und werden als Ladungsträger bezeichnet. Man unterscheidet die negativ geladenen Elektronen (m e = 9,11×10 -31 kg) der Atomhülle von den positiv geladenen Protonen (m p = 1,67×10 -27 kg) des Atomkernes, wobei der Betrag der Ladung bei beiden gleich groß ist. Bedeutsam ist, dass sich gleichnamige Ladungen abstoßen , während sich ungleichnamige Ladungen anziehen . Elektrischer Strom ist ein Naturphänomen und kein Produkt eines genialen Physikers. Es fließen dabei in erster Linie leicht bewegliche Elektronen der Atomhülle durch einen dafür geeigneten Leiter wie etwa Kupfer oder Wolfram . Ein elektrisches Feld entsteht, wenn sich um positive oder negative Ladungen herum infolge der gegenseitigen Anziehung oder Abstoßung bestimmte Kraftwirkungen ergeben, die man mithilfe von Feldlinienbildern darstellen kann. Ein magnetisches Feld hingegen entsteht sowohl durch die Kraftwirkung zwischen Dauermagneten aus Eisen, Kobalt oder Nickel als auch um bewegte elektrische Ladungen herum wie etwa Stromleitungen oder Spulen . Ein für sehr viele technische Entwicklungen äußerst wichtiger Bereich ist die elektromagnetische Induktion , bei der sowohl durch die Bewegung eines Leiters in einem Magnetfeld als auch durch Änderung eines von einem Leiter umschlossenen Magnetfeldes (zum Beispiel einer Spule) eine elektrische Spannung und ein elektrischer Stromfluss erzeugt werden. Von großer Bedeutung für die Stromerzeugung (zum Beispiel durch Generatoren) und die Stromübertragung über weite Strecken durch Hochspannung (erzeugt durch sogenannte Transformatoren) ist der Wechselstrom , der uns auch im Haushalt zur Verfügung gestellt wird. Er unterscheidet sich vom Gleichstrom dadurch, dass er regelmäßig seine Richtung ändert (in Deutschland mit 50 Hz, was 100 Richtungsänderungen pro Sekunde entspricht). Von elektromagnetischen Schwingungen spricht man, wenn sich die Feldstärke eines elektrischen Feldes und eines magnetischen Feldes periodisch ändern (zum Beispiel beim Kondensator oder bei Spulen). Zudem senden in einem Leiter beschleunigte oder abgebremste Ladungen elektromagnetische Felder aus, die sich im Raum mit Lichtgeschwindigkeit ausbreiten. Dabei ändern sich die Stärken des elektrischen und magnetischen Feldes sowohl räumlich als auch zeitlich periodisch und besitzen daher die gleichen Eigenschaften wie Wellen. Man bezeichnet sie deshalb als elektromagnetische Wellen . Die Grundlagen der Elektronik beschäftigen sich mit Bauelementen aus der Halbleitertechnologie wie etwa Dioden und Transistoren sowie den daraus anwendbaren Schaltungen .

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Das Bohrsche Atommodell: Erfolge und Mängel

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Erfolge und die Mängel des Bohrschen Atommodells kennen. Das Atommodell von Niels Bohr, mit dem er im Jahr 1913 an die Öffentlichkeit ging, wird aus Sicht des heute allseits anerkannten quantenmechanischen Atommodells als Zwischenstation bei der Modellentwicklung betrachtet. Sowohl die anschaulichen Elektronenbahnen um den Kern als auch seine teilweise nicht begründeten Postulate sind zu kritisieren. Dennoch stellt das Bohrsche Atommodell mit der von Planck und Einstein übernommenen Quantisierung einen Meilenstein auf dem Weg zu den heutigen Erkenntnissen dar, den man Schülern und Schülerinnen nicht vorenthalten sollte.Atommodelle gibt es schon seit dem Altertum. Davon ausgehend werden die Schülerinnen und Schüler mit einem geeigneten Video oder in Form eines Referates in das Thema eingeführt. Die von Bohr aufgestellten Postulate sind zwar nur in Teilbereichen für das Wasserstoffatom experimentell bestätigt, sie sind aber durch entsprechende Gesetzmäßigkeiten und den daraus resultierenden Modellrechnungen aus dem Bereich der elektrischen Felder gut nachvollziehbar. Das Unterrichtsmaterial ist daher gut geeignet und auch verständlich für Schülerinnen und Schüler, die Physik nicht als Leistungs- und Abiturfach gewählt haben. Das Bohrsche Atommodell im Physik-Unterricht Das Bohrsche Atommodell mit seinen Erfolgen und Mängeln soll die Schülerinnen und Schüler in die komplizierte Beschreibung der Vorgänge in Atomen einführen. Am Beispiel des noch halbwegs "einfach" zu beschreibenden Wasserstoffatoms wird den Lernenden gezeigt, wie man sich die Vorgänge in der Atomhülle anschaulich vorstellen kann. Das Bohrsche Atommodell kann aufgrund der gut nachvollziehbaren Mathematik als Grundlage für die quantenmechanische Betrachtung des Wasserstoffatoms gesehen werden. Vorkenntnisse Grobe Vorkenntnisse von Lernenden können insofern vorausgesetzt werden, dass im Rahmen der Elektrizitätslehre bereits die Gesetzmäßigkeiten in elektrischen Feldern einschließlich der Verläufe von Potentialen besprochen sind - und bei dieser Thematik wieder zum Tragen kommen. Didaktische Analyse Bei der Behandlung dieses Themas muss man darauf achten, dass die Erfolge und Mängel des Modells aufgezeigt werden. Die realistischen und experimentell in allen Bereichen bestätigten Abläufe können nur mittels der Quantenmechanik und der Einführung von Wahrscheinlichkeitswellen beschrieben und berechnet werden, was allerdings im Rahmen der für die Schule zur Verfügung stehenden mathematischen Mitteln nur eingeschränkt möglich ist. Anhand der aus der Elektrizitätslehre bekannten Abläufe in elektrischen Feldern und Potentialen können Gleichungen hergeleitet und angewendet werden, deren Ergebnisse in Teilen für das Wasserstoffatom auch experimentell bestätigt sind. Fachkompetenz Die Schülerinnen und Schüler erhalten einen historischen Einblick in die Entwicklung der Atomvorstellung. wissen, dass das Bohrsche Atommodell nur in Teilen die Realitäten in einer Atomhülle widerspiegeln kann. können die Vorgänge in der Atomhülle des Wasserstoffatoms in grober Näherung beschreiben und berechnen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. überprüfen die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen ihrer Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen.

  • Physik / Astronomie
  • Sekundarstufe II

Wurfbewegungen und ihre physikalischen Gesetzmäßigkeiten

Unterrichtseinheit
14,99 €

Wurfbewegungen lassen sich in vielfältiger Form – zum Beispiel beim Werfen eines Balles – nachvollziehen. Dabei muss unterschieden werden, in welcher Form der Ball geworfen wird: So kann man ihn senkrecht nach oben werfen oder ihn einfach aus der Hand senkrecht nach unten auf den Boden fallen lassen. In den meisten Fällen wird man den Ball aber schräg nach oben werfen, sodass ihn ein Partner oder eine Partnerin fangen kann. Man beobachtet dabei, dass die dabei entstehende Flugbahn davon abhängig ist, unter welchem Winkel und mit welcher Geschwindigkeit man den Ball abgeworfen hat.Bei der Besprechung von Wurfbewegungen kann man anhand von einfachen und bekannten Beispielen den Lernenden leicht verständlich machen, wie es zu einer Wurfbewegung kommt. Für die Erläuterung und Herleitung der physikalischen Gleichungen von Wurfbewegungen ist es dabei wichtig, den Unterschied zwischen einer eindimensionalen Bewegung (senkrechter Wurf und freier Fall) und der zweidimensionalen Bewegung beim schiefen Wurf schräg nach oben oder unten herauszuarbeiten. Wurfbewegungen und ihre physikalischen Gesetzmäßigkeiten Wurfbewegungen sind ein Thema, zu dem die Schülerinnen und Schüler zunächst anhand von relativ einfachen Zusammenhängen gut hingeführt werden können. Dadurch werden die für die verschiedenen Wurfbewegungen herzuleitenden Formeln verständlich und damit nachvollziehbar. Erst bei etwas komplexeren Aufgabenstellungen sind etwas anspruchsvollere mathematische Kenntnisse erforderlich, um die Gesetze an die Gegebenheiten anzupassen. Vorkenntnisse Vorkenntnisse sind bei diesem Thema auf jeden Fall vorhanden, weil alle Lernenden mit dem Werfen von Bällen oder Steinen am Wasser vertraut sein dürften. Anhand der dabei entstehenden Flugbahnen sollte es auch gut möglich sein, die entsprechenden und sich teilweise überlagernden physikalischen Gesetze den Lernenden verständlich zu machen. Didaktische Analyse Das Besondere an Wurfbewegungen ist deren Abhängigkeit von Anfangsgeschwindigkeit und Abwurfwinkel in Zusammenhang mit der stets wirkenden Gravitationskraft auf das jeweilige Flugobjekt. Das können Bälle, Steine oder auch Raketen sein. Sobald sie nach dem Abschuss sich selbst überlassen sind, entsteht eine sogenannte ballistische Flugbahn, die sich – in der Realität unter Einbeziehung der Luftreibung – exakt berechnen lässt. Methodische Analyse Bei der Besprechung der Gesetzmäßigkeiten von Wurfbewegungen lassen sich aufgrund der dabei wirkenden Überlappungen verschiedener Bewegungen auch Zusammenhänge mit anderen Bereichen der Physik – etwa der Elektrizitätslehre bei der Bewegung von freien Elektronen – herstellen. Fachkompetenz Die Schülerinnen und Schüler können die sich teilweise überlappenden Abläufe bei Wurfbewegungen beschreiben und erklären. wissen, wie man die Formeln bei unterschiedlichen Wurfbewegungen herleitet und anwendet. kennen die Zusammenhänge von mechanischen Wurfbewegungen mit anderen Bereichen der Physik. Sozialkompetenz Die Schülerinnen und Schüler vertiefen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschülern auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern und Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Die harmonische mechanische Welle – eine Einführung

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit werden an verschiedenen Arten von mechanischen Wellen Gemeinsamkeiten und Gesetzmäßigkeiten abgeleitet, mit denen sich – ausgehend von der harmonischen mechanischen Schwingung – ihre Welleneigenschaften gut beschreiben lassen. Verwendet man den Begriff "Welle", so können damit sehr unterschiedliche Dinge gemeint sein. In physikalischer Hinsicht denken die meisten Menschen zuerst an Wasserwellen, die uns als kreisförmige Wellen nach einem Steinwurf ins Wasser oder Wellenfronten am Ufer eines Sees bekannt sind. Im gesamten Spektrum der Physik finden sich jedoch noch viele Arten von Wellen, zum Beispiel im Bereich der Akustik oder der Ausbreitung von Licht. Mit dem Begriff "Welle" wird automatisch assoziiert, dass sich etwas ausbreitet – und dem ist auch so! Allerdings ist es sehr wichtig, schon beim Einstieg in das Thema zu zeigen, dass sich etwa bei der Ausbreitung einer einfachen Seilwelle die einzelnen Wellenteilchen analog einer harmonischen mechanischen Schwingung ausschließlich auf und ab bewegen. Die Vorwärtsbewegung der "Welle" wird durch die mechanische Kopplung der einzelnen Teilchen erreicht, die in Abhängigkeit von der Zeit zu schwingen anfangen. Die darin enthaltene Energie wird mit der Ausbreitungs- oder Wellengeschwindigkeit c in Bewegungsrichtung weitergeleitet – im theoretischen Fall ungedämpft. Die harmonische mechanische Welle – eine Einführung Den Lernenden wird bei diesem Thema schnell bewusst werden, dass die Beschreibung der Wellenausbreitung einer mechanischen Welle und die Herleitung der zugehörigen Gesetze mathematisch nicht ganz einfach ist. Deshalb sollte man der Herleitung genügend Zeit einräumen und eventuell eine weitere Unterrichtsstunde einplanen. Schließlich ist die mechanische eindimensionale Wellengleichung Voraussetzung für das Verständnis weiterer Wellengleichungen im Rahmen des Oberstufenunterrichts. Vorkenntnisse Die Lernenden kennen typische Wellenbewegungen – zum Beispiel von Wasserwellen. Die zunächst einfach aussehenden Abläufe werden aber umgehend kompliziert, wenn die zugehörigen physikalischen Gleichungen abgeleitet werden. Didaktische Analyse Beim Thema "Wellen" erfahren die Schülerinnen und Schüler, dass – ausgehend von der Mechanik – die mathematische Beschreibung von unterschiedlichen Wellen in den verschiedenen Bereichen der Physik (Akustik, Elektrizitätslehre, Optik, Quantenphysik) in erheblichen Teilen auf ähnliche und damit bekannte Herleitungen der Mechanik zurückgeführt werden können. Methodische Analyse Will man den Lernenden das Thema "Wellen" näherbringen, muss man darauf achten, dass die eindimensionale Wellengleichung mit ihren unterschiedlichen Parametern wie "x" und "t" verstanden wird. Deshalb sollte man aufpassen, dass man das Niveau der Aufgabenstellung nicht zu hoch ansetzt. Fachkompetenz Die Schülerinnen und Schüler kennen die Zusammenhänge von Wellenausbreitung und Kreisbewegung. wissen um die mechanische Kopplung der einzelnen Teilchen bei der Wellenausbreitung. können die eindimensionale mechanische Wellengleichung herleiten und erläutern. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschüler-/innen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen.

  • Physik / Astronomie
  • Sekundarstufe II

Elektromagnetische Induktion – Stromerzeugung mithilfe der Lorentzkraft

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit entwickeln die Schülerinnen und Schüler ein Verständnis für die Voraussetzungen zur Erzeugung von elektrischem Strom, den wir ganz selbstverständlich der Steckdose entnehmen können. Den Lernenden wird dabei vermittelt, dass in einem Leiter, der senkrecht zu einem Magnetfeld bewegt wird, die mit dem Leiter mitbewegten Ladungsträger senkrecht zu ihrer Bewegungsrichtung abgelenkt werden. Diese Erkenntnis des niederländischen Physikers Hendrik Anton Lorentz schuf Ende des 19. Jahrhunderts die Grundlagen für die technische Stromerzeugung, die bis heute gültig sind.Mit einfachen Versuchen mittels einer sogenannten Leiterschaukel werden die Schülerinnen und Schüler damit vertraut gemacht, wie die Ladungsträger des elektrischen Stromes – die Elektronen – in einem Leiter je nach Bewegungsrichtung des Leiters abgelenkt werden. Somit baut sich an den Leiterenden eine Spannungsdifferenz auf und bei Verbindung der Leiterenden durch ein dünnes Kupferkabel entsteht ein mit einem Messgerät feststellbarer Stromfluss. Ebenso lässt sich ganz leicht zeigen, dass sich durch das sich selbst überlassene schaukelartige Hin- und Herschwingen des Leiters die Stromrichtung periodisch ändert; daraus entsteht eine Wechselspannung und somit Wechselstrom. Strom aus der Steckdose – wie funktioniert das eigentlich? Strom aus der Steckdose ist für Schülerinnen und Schüler eine Selbstverständlichkeit. Doch dass es sich dabei um Wechselstrom handelt, welcher Unterschied zwischen Wechselstrom und Gleichstrom besteht, warum manchmal Wechselstrom nötig ist und manchmal aber auch Gleichstrom notwendig ist – das dürfte für viele Lernende neu und interessant sein. Vorkenntnisse Physikalische Vorkenntnisse der Lernenden sind trotz der Kenntnis, dass der Strom für fast alle Haushaltsgeräte aus der Steckdose kommt und dass dieser Strom in Kraftwerken mit riesigen Generatoren erzeugt wird, kaum vorhanden. Dazu fehlt das Wissen, um die eigentlichen Vorgänge, die innerhalb des stromführenden Leiters ablaufen, zu beschreiben. Didaktische Analyse Die Grundlagen für die weiterführenden Themen in der Sek II – wie etwa die Vorgänge und Gesetzmäßigkeiten bei der elektromagnetischen Induktion – werden durch die einfachen Versuche zur Lorentzkraft gelegt. Haben die Lernenden diese Zusammenhänge verstanden, kann mit diesem Grundwissen auch der weiterführende Stoff gut verstanden werden. Methodische Analyse Durch die einfach durchzuführenden und nachzuvollziehenden Versuche mit der Leiterschaukel, die von den Lernenden gefahrlos selbst ausprobiert werden können, kann sowohl ein schneller Lernerfolg generiert werden als auch ein nachhaltiges Interesse an der Elektrizitätslehre. Fachkompetenz Die Schülerinnen und Schüler erkennen die Zusammenhänge bei der Ablenkung von Elektronen im Magnetfeld. können die Entstehung einer Wechselspannung mithilfe der Lorentzkraft beschreiben. kennen die Bedeutung der Lenz'schen Regel für die Stromerzeugung. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen anderer Gruppen auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewissen Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden diskutieren zu können.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Der elektrische Widerstand – Grundlagen

Unterrichtseinheit
14,99 €

Diese Unterrichtseinheit beschäftigt sich mit den Grundlagen des elektrischen Widerstands, einer physikalischen Größe, die von Georg Simon Ohm im Jahr 1826 aus der Proportionalität von Spannung und Stromstärke gefunden wurde. Die Schülerinnen und Schüler lernen mit einfachen Versuchen, dass sich die den Stromfluss darstellenden Elektronen nicht reibungsfrei bewegen können. Vielmehr ist es so, dass es keinen Stromkreis ohne Widerstand gibt, wenn man den physikalischen Spezialfall Supraleitung außer Acht lässt. Der elektrische Widerstand ist vom Material, der Temperatur und anderen Größen wie Länge und Querschnittsfläche eines Leiters abhängig. Die Zusammenhänge werden den Lernenden über das Ohmsche Gesetz nähergebracht, das den Widerstand aus dem Quotienten von Spannung durch Stromstärke berechnet.Zunächst werden den Lernenden die Besonderheiten der Leitfähigkeit von Leitern - im Gegensatz zu Nichtleitern - vorgestellt. Der entscheidende Unterschied zwischen Leitern und Nichtleitern besteht darin, dass Leiter Elektronen in ihrer äußeren Schale besitzen, die bei Anlegen einer elektrischen Spannung die negativ geladenen Elektronen in Bewegung setzen. Anhand von Versuchen und zugehörigen Diagrammen erkennen die Schülerinnen und Schüler, dass das Ohmsche Gesetz nur für bestimmte Leiter, wie etwa Konstantan, gilt. Ein weiterer wichtiger Punkt ist die Einführung des spezifischen Widerstandes, der für die unterschiedlichen Materialien zu ermitteln ist. Der elektrische Widerstand als Thema im Physik-Unterricht Uns allen bekannte elektrische Anwendungen wie Radio oder Computer kannte der Erlanger Physiker Georg Simon Ohm im 19. Jahrhundert noch nicht. Mit seinen Experimenten hat er jedoch gezeigt, dass zwischen der an einen Leiter angelegten Spannung und der daraufhin durch ihn fließenden Stromstärke ein Zusammenhang bestand. Mit dem nach ihm benannten Ohmschen Gesetz hat Georg Simon Ohm bewiesen, dass unter bestimmten Voraussetzungen der Quotient zwischen Spannung und Stromstärke konstant ist. Er hatte mit der Konstante den elektrischen Widerstand und damit die wichtigste Grundlage vieler Berechnungen in der Elektrotechnik gelegt. Vorkenntnisse Vorkenntnisse von Lernenden dürfen nur dann erwartet werden, wenn sie sich bereits mit Elektro- oder Elektronik-Baukästen beschäftigt haben. Im Übrigen sind Spannung und Stromstärke als Begriffe sicher bekannt, den Wenigsten aber kaum die Zusammenhänge zwischen beiden. Didaktische Analyse Bei der Besprechung des Themas muss man darauf achten, den Lernenden klar zu machen, dass mit unterschiedlichen Widerständen in einem einfachen Stromkreis, aber auch in der Elektronik der Stromfluss durch die verschiedenen Bereiche des Stromkreises gesteuert werden kann. Methodische Analyse Der Begriff des Widerstandes lässt sich an verschiedenen Beispielen aus dem Alltag relativ leicht zeigen, wie etwa bei einem Schlauch, durch den man Wasser pumpen will: Man wird dabei schnell erkennen, dass dieselbe Menge an durchlaufendem Wasser bei einem dünneren Schlauch mehr Druck erfordert als bei einem dicken Schlauch. Mit anderen Worten setzt der dünne Schlauch dem dicken mehr Widerstand entgegen. Angewandt auf den elektrischen Widerstand kann man das problemlos mit einem dünnen und einem dicken Kabel gleicher Länge zeigen. Fachkompetenz Die Schülerinnen und Schüler wissen um die Bedeutung des Widerstandes in Elektrizitätslehre und Elektronik. kennen die Unterschiede zwischen Ohmschem Widerstand und spezifischem Widerstand. können Berechnungen in verzweigten Stromkreisen mit mehreren Widerständen anstellen. untersuchen die elektrische Leitfähigkeit von Stoffen experimentell (Leiter, Nichtleiter). lernen den Aufbau eines Stromkreises unter Vorgabe einer Schaltskizze durchzuführen sowie Stromkreise in Form von Schaltskizzen darstellen zu können. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen.

  • Physik / Astronomie
  • Sekundarstufe I

Blitze und Verhalten bei Gewitter – virtuelle Experimente

Unterrichtseinheit

Schülerinnen und Schüler erkunden am Rechner Blitzschlagrisiken in der freien Natur. In einem zweiten Experiment können Lichtbogenüberschläge zwischen zwei Elektroden unter verschiedenen Bedingungen simuliert werden. Blitze sind "hochenergetische" Naturphänomene, die uns nicht nur faszinieren, sondern auch das Fürchten lehren können. Etwa fünf Menschen sterben in Deutschland pro Jahr durch Blitzschlag. Wie Blitze entstehen ist immer noch umstritten - möglicherweise sind sogar energiereiche Strahlen aus dem Weltall daran beteiligt. Wissenschaftlich gesichert ist jedoch, dass die Blitzhäufigkeit mit dem Eisgehalt der Wolken steigt. Auf dieser Beobachtung basiert auch das derzeit gängige Modell zur Blitzentstehung: Aufwinde tragen feine Wassertröpfchen in höhere und kalte Luftschichten, wo sie zu feinen Eispartikeln gefrieren. Diese kollidieren dort mit größeren Graupelkörnern. Die schweren Graupeln "stehlen" den Eiskristallen Elektronen und fallen nach unten. Die nun positiv geladenen feinen Kristalle verbleiben dagegen in den höheren Luftschichten. Auf diese Weise entsteht ein starkes elektrisches Feld in den Gewitterwolken. Die hier vorgestellten Online-Experimente zum Thema Blitz sind Teil des SWR-Angebots Warum ... ist der Himmel blau? Weitere Informationen zum Thema Blitze und Energie gibt es auch im Ezoom zum Wissenschaftsjahr 2010 - Die Zukunft der Energie. Vorentladungen - Fangentladungen - Hauptblitz Ein Blitz ist ein Potenzialausgleich innerhalb der Gewitterwolke oder zwischen der Erdoberfläche und dem unteren Teil der Wolke. Die Spannung muss dabei einige zehn Millionen Volt betragen. Der Entladung geht eine Serie von Vorentladungen (Leitblitzen) voraus, die gegen die Erdoberfläche gerichtet sind. Kurz bevor diese den Erdboden erreichen, gehen vom Boden eine oder mehrere Fangentladungen aus - meist von hohen Objekten (Bäume, Masten, Kirchtürme). Den so entstandenen Blitzkanal heizt der folgende Hauptblitz auf rund 30.000 Grad Celsius auf. Die heiße Luft dehnt sich explosionsartig aus und erzeugt intensive Schallwellen - den Donner. Die Stromstärke einer Hauptentladung beträgt etwa 20.000 bis 30.000 Ampere. Einsatz der Animationen Mit einem interaktiven Blitzsimulator aus dem Online-Angebot von SWR-Wissen können Schülerinnen und Schüler mit der Blitzschlaggefahr experimentieren. Sie lernen dabei wichtige Regeln für das Verhalten bei einem Gewitter im Freien kennen. Die virtuellen Experimente können das Unterrichtsgespräch per Beamer-Projektion unterstützen oder auch von den Lernenden im Rahmen einer Hausaufgabe am heimischen Rechner genutzt werden. Neben den interaktiven Materialien bieten die SWR-Wissen-Internetseiten vielfältige Informationen zum Thema Blitze. Von "Elfen" und "Kobolden" Bei der Behandlung von Blitzen bietet sich auch - als zusätzlicher "Motivations-Joker" - ein kleiner Exkurs zu "Elfen" und "Kobolden" an - rätselhaften Blitzerscheinungen, die oberhalb der Wolken auftreten. Beobachtet werden diese Blitzformen daher vorwiegend aus Flugzeugen oder Space Shuttles (siehe Zusatzinformationen). Gerade solche ungeklärten Phänomene üben auf Kinder einen großen Reiz aus und sind gut geeignet, naturwissenschaftliches Interesse zu entfachen. Inhalte und Funktionen der Blitz-Experimente Die interaktiven Möglichkeiten der SWR-Online-Experimente werden hier kurz beschrieben und per Screenshot vorgestellt. Die Schülerinnen und Schüler sollen wichtige Regeln für das Verhalten bei Gewitter kennenlernen. in einem virtuellen Experiment den Einfluss von elektrischer Spannung, Luftdruck, Temperatur und relativer Luftfeuchtigkeit auf Blitzentladungen untersuchen. Thema Blitze und Verhalten bei Gewitter - virtuelle Experimente Autoren Tilman Bischoff, Dr. André Diesel Fächer Physik (Elektrizitätslehre), Geographie (Wolkenbildung) Zielgruppe ab Klasse 8 (Physik), Sekundarstufe II (Geographie) Zeitraum variabel bei der Unterstützung des Unterrichtsgesprächs Technische Voraussetzungen Präsentationsrechner mit Beamer Einen Beitrag zur Verhaltenserziehung bei Gewittern bietet die SWR-Gewittersimulation. Vor gefährlichen Ratschlägen wie "Eichen sollst du weichen, Buchen sollst du suchen" wird gewarnt. Um bei den Schülerinnen und Schülern eine Sensibilisierung für die Mechanismen des Blitzeinschlags zu erzielen, werden die Auswirkungen und das Risiko des Verhaltens bei einem Gewitter im Freien bewertet. Als virtuelle Versuchskaninchen sind ein Golfspieler, eine hockende Person und ein weidendes Rind auswählbar. Der Golfspieler steht stellvertretend für Personen, die metallische Gegenstände bei sich tragen und damit die Gefahr, vom Blitz getroffen zu werden, drastisch erhöhen. Am Beispiel des Tieres wird auf die Gefährlichkeit des Erdstroms eingegangen, der - auch weiter vom Ort des Einschlags entfernt - zu tödlichen Strömen durch den Körper führen kann. In einer zweiten - stärker physikalisch ausgerichteten - Simulation können Lichtbogenüberschläge zwischen zwei Elektroden im Labormaßstab simuliert werden. So lassen sich Erkenntnisse über den Einfluss von elektrischer Spannung, Luftdruck, Temperatur sowie relativer Feuchte auf die Überschlagbedingungen gewinnen.

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Spannungslabor – Unterstützung des Argumentierens mit didaktischen…

Unterrichtseinheit

Im Rahmen dieser Unterrichtseinheit erlernen die Schülerinnen und Schüler den Umgang mit der Augmented-Reality (AR)-Applikation "PUMA : Spannungslabor" und nutzen diese für die Arbeit in Kleingruppen. In zwei Experimenten werden die Applikation beziehungsweise die in der Applikation dargestellten didaktischen Modelle der Elektrizität genutzt, um anhand der Modelle zu argumentieren und Hypothesen für den Experimentierprozess zu generieren. Die Unterrichtseinheit ist in drei Unterrichtsstunden gegliedert. Im Verlauf der ersten Unterrichtsstunde wird die AR-Applikation "PUMA : Spannungslabor" von der Lehrkraft im Rahmen eines Demonstrationsexperiments genutzt, um die Darstellung der didaktischen Modelle "Elektronengasmodell", "Rutschenmodell" und "Stäbchenmodell" mit den Schülerinnen und Schülern zu erarbeiten. Die Lehrkraft erklärt und demonstriert den richtigen Umgang mit der Applikation. Im Rahmen der folgenden zwei Unterrichtsstunden erarbeiten die Schülerinnen und Schüler in Kleingruppen in Experimenten die Gesetzmäßigkeiten zur Stromstärke und Spannung bei Parallel- bzw. Reihenschaltungen. In den Experimentierphasen "Hypothesen formulieren" und "Ergebnisse mit der Ausgangshypothese vergleichen" nutzen die Schülerinnen und Schüler dabei die Applikation "PUMA : Spannungslabor" zur Unterstützung der Argumentation mit didaktischen Modellen. Kurzbeschreibung der Applikation "PUMA : Spannungslabor" Die Applikation überblendet einen Stromkreis mit Darstellungen der Leitungselektronen (in Form kleiner weißer Kugeln) und Visualisierungen des elektrischen Potentials. Die Darstellung des elektrischen Potentials kann gemäß des Elektronengasmodells (in Form einer Färbung der Leiterbahnen entsprechend des elektrischen Potentials), gemäß des Stäbchenmodells (in Form einer Anhebung der Leiterbahnendarstellung entsprechend des elektrischen Potentials) oder gemäß des Rutschenmodells (durch zur Anhebung der Leiterbahnen zusätzlichen Einblendung der sich bewegenden Leitungselektronen) erfolgen. Für den Einsatz der Applikation wird ein Experimentierset ELEKTRIK 1 der Firma MEKRUPHY benötigt. Neben den bereits beschriebenen Darstellungen können außerdem Messdaten der elektrischen Grundgrößen (Spannung, Stromstärke, elektrischer Widerstand) an den Bauteilen eingeblendet werden und für eine qualitative Interpretation des elektrischen Widerstands kann eine Visualisierung der Darstellung der Interaktion von Leitungselektronen und Materie auf Teilcheneben gemäß des Drude-Modells des elektrischen Widerstands eingeblendet werden. Für die beschriebene Unterrichtseinheit werden die Darstellungen der Leitungselektronen und der Modelle der elektrischen Potentiale benötigt. In der Applikation ist ein Tutorial mit Videos implementiert, welches Lehrkräfte in ihrer ersten Nutzung anleiten kann. Weitere Informationen und eine Möglichkeit zum Download der Applikation finden Sie über den Link am Ende dieser Seite. Relevanz des Themas Die jüngere fachdidaktische Forschung zur Elektrizitätslehre der Sekundarstufe I hat festgestellt, dass viele Schülerinnen und Schüler den Unterricht mit teils stark prävalenten fehlerhaften Vorstellungen zum Stromkreis verlassen (etwa die Stromverbrauchsvorstellung, unzureichende Trennung der Konzepte von Spannung und Stromstärke oder fehlendes Systemdenken beim Betrachten eines Stromkreises). Durch die explizite Aufforderung der Nutzung didaktischer Modelle zur Generierung von Hypothesen und Plausibilisierung von Ergebnissen soll eine stärkere Verknüpfung von Fachinhalt und didaktischem Analogie-Modell erreicht werden, was die Vernetzung der Fachinhalte im Gedächtnis unterstützt und zu gefestigteren Wissensstrukturen führen soll. Die Darstellung der Analogie-Modelle der Elektrizität durch Augmented Reality reduziert zusätzlich die mentale Hürde, sich der Modelle bei der Argumentation und Diskussion physikalischer Sachverhalte zu bedienen. Notwendige und förderliche Voraussetzungen Für einen Einsatz der beschriebenen Unterrichtseinheit ist das Vorhandensein eines Klassensatzes des Experimentierkastens ELEKTRIK 1 erforderlich. Die Lehrkraft muss die Kästen im Vorfeld entsprechend der Anleitung in der Applikation "PUMA : Spannungslabor" präparieren. Die Lehrkraft sollte vor Durchführung der ersten Unterrichtsstunde dieser Einheit die Applikation selbst sorgfältig durchgearbeitet haben. Dafür kann die in der Applikation verfügbare Tutorial-Ressource und das Informationsblatt zur Applikation genutzt werden. Für die Schülerinnen und Schüler ist es ideal, wenn die in der Applikation darstellbaren Analogie-Modelle der Elektrizität (Elektronengasmodell, Rutschenmodell, Stäbchenmodell) bereits bekannt sind und im Unterricht eingeführt wurden. Die Applikation kann aber auch ohne vorherige Nutzung der genannten Modelle im Unterricht für die Erarbeitung der Gesetzmäßigkeiten bei Parallel- und Reihenschaltung auf die beschriebene Art und Weise genutzt werden. Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen (nach dem DigCompEdu Modell) Die Lehrenden sollten in der Lage sein, die Lernenden im Selbstgesteuerten Lernen unter Verwendung digitaler Technologien unterstützen (3.4 Selbstgesteuertes Lernen). Die Lehrenden sollten gewährleisten, dass die Lernenden für die Präsentation ihrer Ergebnisse die digitalen Medien nutzen, um ihre Argumentationen zu ihren wissenschaftlichen Untersuchungen zu unterstützen (5.3 Aktive Einbindung der Lernenden). Fachkompetenz Die Schülerinnen und Schüler verwenden Analogien und Modellvorstellungen zur Wissensgenerierung. stellen an einfachen Beispielen Hypothesen auf. Medienkompetenz Die Schülerinnen und Schüler setzen digitale Werkzeuge bedarfsgerecht zur Wissensgenerierung ein. können digitale Umgebungen und Werkzeuge für den Gebrauch anpassen. Sozialkompetenz Die Schülerinnen und Schüler tauschen sich über physikalische Erkenntnisse und deren Anwendungen unter angemessener Verwendung der Fachsprache und fachtypischer Darstellungen aus. diskutieren Arbeitsergebnisse und Sachverhalte unter physikalischen Gesichtspunkten. 21st Century Skills Die Schülerinnen und Schüler nutzen digitale Werkzeuge zur Unterstützung ihrer Kommunikation und Argumentation. stärken ihre Technologiekompetenz im Umgang mit neuer Software durch zielgenaue Nutzung digitaler Werkzeuge. erkennen den Nutzen von digitalen Medien bei der Visualisierung von abstrakten mentalen Modellen.

  • Physik / Astronomie
  • Sekundarstufe I

Warum brennen Glühlampen durch?

Unterrichtseinheit

Mit einem kurzen Film, einem virtuellen Experimentallabor und Arbeitsblättern wird umfangreiches Wissen rund um die Glühbirne vermittelt.Vor mehr als 100 Jahren hat die Glühbirne ihren Siegeszug begonnen und ermöglicht es seither, die Nacht zum Tag zu machen. Ihre Lebensdauer währt etwa 1.000 Stunden. Warum Glühbirnen schließlich ?durchbrennen?, wird in dieser Unterrichtseinheit untersucht. Dabei wird auf umfangreiches Online-Material aus dem SWR-Angebot "Warum ... ist der Himmel blau?" zurückgegriffen. Das Angebot enthält neben zahlreichen Informationen auch ein virtuelles Experimentallabor und eine interaktive Grafik. Einführender Film Ein einführender Film motiviert, sich weiter mit dem Thema zu beschäftigen. Anhand konkreter Fragen wird der Film analysiert. Wissensvertiefung im interaktiven Glühlampenlabor In einem interaktiven Online-Labor können verschiedene Glühbirnen "getestet" werden. Dabei vertiefen die Schülerinnen und Schüler ihr Wissen. Die Schülerinnen und Schüler sollen den Aufbau und die Funktion einer Glühbirne kennenlernen. anhand eines virtuellen Experiments herausfinden, welches Material am besten für den Glühfaden geeignet ist. Thema Warum brennen Glühlampen durch? Autoren Jürgen Spang, Hanspeter Hauke Fach Physik, Elektrizitätslehre Zielgruppe Klasse 8 bis 9 Zeitraum 2 Stunden Technische Voraussetzungen Ein Präsentations-Rechner mit Beamer und RealPlayer (kostenloser Download) zur Präsentation eines Video-Films, Computer für je zwei Lernende mit Flash Player (kostenloser Download) Jürgen Spang ist als Schulnetzberater im Kreismedienzentrum für den Landkreis Waldshut tätig. Neben seiner Tätigkeit als Webmaster arbeitet er noch an der Realschule Tiengen als Lehrer in dem Unterrichtsfach Physik. Zur Einführung in das Thema wird den Schülerinnen und Schülern ein etwa dreiminütiger Film per Beamer vorgeführt. Szenen aus dem Ablauf der Glühbirnenproduktion werden dabei mit Informationen zur Technik der Glühbirne kommentiert: Wie heiß wird der Wolfram-Glühfaden? Warum wird die Luft in einer Glühlampe gegen ein Füllgas ausgetauscht? Warum brennen die Glühfäden trotz der Abwesenheit von Sauerstoff durch? Was ist das besondere an Halogenlampen? Arbeitsblatt Nach der Vorführung können sich die Schülerinnen und Schüler spontan zum Film äußern. Ziel soll es sein, dabei die Neugier auf weitere Informationen zu wecken. Um die Sammlung der Informationen zu systematisieren, wir ein Arbeitsblatt verwendet: Die Schülerinnen und Schüler sollen zunächst einige Minuten Zeit haben, um sich mit den Fragen vertraut zu machen und Verständnisfragen zu stellen. Danach kann der Film ein zweites Mal vorgeführt werden mit der Maßgabe, besonders darauf zu achten, dass anschließend die Fragen beantwortet werden können. In leistungsschwachen Klassen kann der Film auch nach kurzen Abschnitten, in welchen die zur Beantwortung der Fragen notwendigen Informationen enthalten sind, angehalten werden. Bevor der Film dann weiter vorgeführt wird, sollte Zeit für die schriftliche Beantwortung der Fragen gegeben werden. Bereits während der Vorführung des Films können sich die Schülerinnen und Schüler Notizen auf der Rückseite des Arbeitsblattes machen. Danach können die Fragen im Lehrer-Schüler-Gespräch ausgewertet und die Antworten mithilfe der entsprechenden Filmstellen analysiert werden. Parallel dazu sollen die Schülerinnen und Schüler ihre Notizen ergänzen. Die Schülerinnen und Schüler sollen zunächst Gelegenheit haben, sich frei und ohne Vorgaben auf den SWR-Internetseiten zum Thema "Warum brennen Glühlampen durch?" zu bewegen: Warum brennen Glühlampen durch? Online-Materialien zum Thema aus dem "Warum Physik"-Angebot des Südwestrundfunks (SWR). Glühlampen-Exploratorium Mithilfe des Glühlampen-Exploratoriums lernen die Schülerinnen und Schüler die Bauteile einer Glühbirne kennen. Anschließend wird per Beamer das virtuelle Experimentallabor vorgestellt. Danach können die Schülerinnen und Schüler in Partnerarbeit mit den Glühbirnen zu experimentieren. Sie können dabei die Versuchsreihen des Glühlampen-Erfinders, Thomas Alva Edison, nachvollziehen. Zum Experimentieren stehen sechs Glühfadenmaterialien mit verschiedenen Schmelztemperaturen zur Verfügung. Im ersten Teilexperiment kann man versuchen, die Glühfäden an Luft durch Stromfluss zu erhitzen. Im Versuchsverlauf wird klar, dass ein Erhitzen an Luft schon bei Rotglut zum Verbrennen des Glühdrahts führt. Erst im Vakuum machen sich die unterschiedlichen Schmelzpunkte der Metalle bemerkbar. Dabei können die jeweiligen Schmelztemperaturen ermittelt werden. Bei Glühfadentemperaturen unterhalb des Schmelzpunktes lässt sich zusätzlich im Zeitraffer die durchschnittliche Lebensdauer des Glühfadens ermitteln. Ein Vergleich mit handelsüblichen Glühlampen ließe sich daran anschließen. Die Erkenntnis, dass auch bei Temperaturen unterhalb des Schmelzpunktes Metallatome aus dem Glühfaden verdampfen und diesen somit schwächen, lässt sich bei der Arbeit mit der Lebensdauersimulation gewinnen. Die Schülerinnen und Schüler sollen die Bedingungen für die längste Brenndauer herausfinden und Ihre Einzelergebnisse in eine Tabelle eintragen. Auf Zuruf kann festgestellt werden, wer gewonnen hat. Die Siegerin oder der Sieger darf dann seinen Versuch am Lehrer-Rechner per Beamer der Klasse vorstellen. Als Hausaufgabe kann den Schülerinnen und Schüler der Auftrag erteilt werden, sich über die Geschichte der Glühbirne und deren Erfinder "schlau" zu machen. Auf zwei bis drei DIN A 5-Kärtchen sollen die wichtigsten Fakten notiert werden, um sie dann in der nächsten Stunde nur mithilfe der Aufzeichnungen und Notizen vor der Klasse vortragen zu können. Jürgen Spang ist als Schulnetzberater im Kreismedienzentrum für den Landkreis Waldshut tätig. Neben seiner Tätigkeit als Webmaster arbeitet er noch an der Realschule Tiengen als Lehrer in dem Unterrichtsfach Physik.

  • Physik / Astronomie
  • Sekundarstufe I

Grundbegriffe der Wellenlehre mit GeoGebra

Unterrichtseinheit

Der hier vorgestellte Online-Kurs mit interaktiven GeoGebra-Applets bietet variabel einsetzbare Materialien zum Lehren und Erlernen der Grundbegriffe der Wellenlehre.Schwingungen und Wellen gehören zu den grundlegenden Phänomenen, die in vielen Gebieten der Physik auftreten: der Ton einer schwingenden Saite in der Akustik, die Wellennatur des Lichts in der Optik, der Schwingkreis in der Elektrizitätslehre bis hin zu den Wellenbetrachtungen in der Atom-, Kern- und Quantenphysik. In nahezu jedem Lehrbuch werden die Entstehung und das Fortschreiten von Wellen mit einer Reihe von Momentaufnahmen dargestellt, um der dynamischen Natur der Sache gerecht zu werden. Die kostenfreie dynamische Geometriesoftware GeoGebra bietet hier weitaus bessere Visualisierungsmöglichkeiten, die auf dem Papier und an der Tafel nicht realisierbar sind und die das Verständnis erleichtern. Der Lehrende oder die Lernenden können mithilfe dynamischer Java-Applets, die mit GeoGebra erstellt wurden, gleichsam die Zeit schnell, langsam, vorwärts oder rückwärts laufen lassen und auch anhalten. Parameter wie Amplitude, Frequenz und Phasengeschwindigkeit können kontinuierlich verändert und so deren Einfluss auf die Erscheinung einer Welle beobachtet werden. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den physikalischen Sachverhalten. Kurze Kontrollfragen mit einblendbaren Lösungen dienen der eigenständigen Lernzielkontrolle. Einsatz der Materialien im Unterricht Der Online-Kurs kann zur Einführung, Vertiefung und Festigung sowie zur Wiederholung des Stoffs eingesetzt werden. Gestaltung der Arbeitsmaterialien Hinweise zur Textgestaltung, zu "Mouse-Over-Effekten", zu den Kontrollfragen und Lösungen des Kurses sowie zur verwendeten Bildquelle "Wikimedia Commons". Die Schülerinnen und Schüler sollen die Zeigerdarstellung der harmonischen Schwingung verstehen. die Entstehung und das Fortschreiten einer Seilwelle (mechanische, harmonische, lineare Transversalwelle) verstehen. die Begriffe Phase, Phasenwinkel, Periodendauer, Frequenz, Wellenlänge und Phasengeschwindigkeit einer Welle kennen und erklären können. wissen, dass bei der Transversalwelle keine Materie, sondern Energie in Ausbreitungsrichtung transportiert wird. die zeitliche und räumliche Periodizität als Kennzeichen einer Welle erkennen. die Herleitung der Wellengleichung verstehen. die Wellengleichung anwenden können. Trigonometrie Erforderliche mathematische Voraussetzungen für den Kurs sind Kenntnisse in Trigonometrie, insbesondere im Umgang mit der Sinusfunktion und dem Bogenmaß. Schwingungen Zudem ist es sinnvoll, (mechanische) Schwingungen vor der Wellenlehre zu behandeln. Deshalb knüpft die Lerneinheit mit dem Phasenzeigerdiagramm direkt an die harmonische Schwingung an. Zur Einführung der wesentlichen Eigenschaften einer Welle beschränkt sich der Kurs auf die Betrachtung einer (Gummi-)Seilwelle (mechanische, lineare, harmonische, Transversalwelle). Die gewonnenen Erkenntnisse lassen sich dann auf andere Wellentypen (zum Beispiel longitudinale Wellen) übertragen. Für den Online-Kurs bieten sich drei Einsatzmöglichkeiten an: Einführung in die Wellenlehre ohne vorherige Behandlung im Unterricht. Vertiefung und Festigung des bereits im Unterricht behandelten Stoffes, eventuell in Übungsstunden oder als Hausaufgabe. Wiederholung des Stoffs in höheren Jahrgangsstufen, wenn zum Beispiel nach der Mechanik das Thema in der Atomphysik erneut aufgegriffen wird (insbesondere bei Zeitknappheit). Partnerarbeit oder Beamerpräsentation Im Idealfall arbeiten ein bis zwei Lernende selbstständig an einem Computer. Die Applets können natürlich auch mit einem Beamer in einem fragend-entwickelnden Unterricht oder im Rahmen eines Lehrervortrags präsentiert werden. Zum Einstieg: erst "austoben lassen", dann "anleiten" Erfahrungsgemäß entdecken die Schülerinnen und Schüler sehr schnell alleine die Bedienungsmöglichkeiten der Applets und welche unabhängigen Objekte bewegt werden können, so dass auf ausführliche Bedienungshinweise verzichtet werden kann. Zu Beginn der Stunde hat sich bei computergestützten Unterrichtseinheiten eine "Austob-Phase" bewährt, in der die Schüler und Schülerinnen etwa fünf Minuten lang einfach alle Knöpfe und Regler eines Programms ausprobieren dürfen, bevor sie dann zielgerecht die einzelnen Arbeitsanweisungen befolgen. Weniger ist mehr! Eine billigen Applaus verheißende Forderung vieler "Bildungsexperten" ist der Einsatz möglichst vieler Medien im Unterricht. Dabei werden aber die restriktiven Umstände der Unterrichtspraxis vergessen. Der Physiklehrer ist beispielsweise versucht, Lerninhalte sowohl am Realexperiment (hier: Wellenmaschine, Wellenwanne, Schattenprojektion einer Schraubenlinie … ) als auch mit der Computersimulation darzubieten. Dies kann jedoch aufgrund des Zeitdrucks im Unterrichtsalltag oft in ineffiziente Hektik ausarten. Eine Methode sollte genügen. Weniger ist manchmal mehr! Der Text der Webseiten wurde bewusst prägnant gehalten, um einen selbstständigen Hefteintrag zu erleichtern. Alle wichtigen Begriffe sind wie im Tafel-Unterricht durch rote Unterstreichung hervorgehoben. Zeigt man mit der Maus auf sie, wird eine kurze Definition eingeblendet ("Mouse-Over-Effekt"). Zur Gewährleistung eines möglichst linearen Lernablaufs wurden Hyperlinks nur sehr sparsam eingesetzt. Die Fragen am Ende der einzelnen Arbeitsblätter sind kurz und einfach zu beantworten, um die Schülerinnen und Schüler durch ein schnelles und erfolgreiches Fortkommen zu motivieren. In nachfolgenden Übungen sollte der Schwierigkeitsgrad mit reorganisatorischen und Transferaufgaben erhöht werden. Die Antworten der Kontrollfragen können durch Anklicken der abschließenden Frage- oder Ausrufezeichen angezeigt werden, was sich bei den Lernenden schnell herumspricht (Abb. 1, Platzhalter bitte anklicken). Hier muss an die Arbeitsdisziplin der Schülerinnen und Schüler nach dem Motto "erst denken, dann klicken" appelliert werden. Um die Applets kompakt zu halten, wurde auf die Anzeige der Einheiten einiger Größen verzichtet. Dies ist tolerierbar, solange bei der qualitativen Betrachtung die Einheiten nicht entscheidend zum Verständnis beitragen. Die Einheiten der Wellengrößen sollten auf jeden Fall bei nachfolgenden Übungsaufgaben behandelt werden. Die zusätzliche Angabe der Winkel im Gradmaß neben dem Bogenmaß ist ein Tribut an die für Schüler und Schülerinnen erfahrungsgemäß viel vertrautere Einheit beim Abschätzen von Winkelgrößen. Wie in der Realität ist die Phasengeschwindigkeit auch in den Java-Applets des Online-Kurses eine von der Frequenz unabhängige Größe. Die Wellenlänge kann deshalb nicht direkt, sondern nur über die Phasengeschwindigkeit oder die Frequenz verändert werden. Das Verständnis der Zeigerdarstellung einer Schwingung ist universell (zum Beispiel auch beim Wechselstromkreis) anwendbar. Als Bildquelle für den Onlinekurs "Grundbegriffe der Wellenlehre" wurde die Mediendatenbank "Wikimedia Commons" verwendet. Im Gegensatz zu traditionellen Medienarchiven ist Wikimedia Commons frei: Jeder darf die hier bereitgestellten Dateien kopieren, nutzen und bearbeiten, solange die Autorinnen und Autoren genannt und die Kopien und Veränderungen mit derselben Freizügigkeit anderen zur Verfügung gestellt werden. Wikimedia Commons Hauptseite von Wikimedia Commons; die Inhalte sind nach Themen, Typen (Bilder, Geräusche, Filme), Autorinnen und Autoren, Lizenzen und Quellen rubriziert. Was ist Wikimedia Commons? Wikimedia Commons nutzt dieselbe Technologie wie Wikipedia und kann ohne besondere technische Fähigkeiten direkt im Webbrowser bearbeitet werden.

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE