• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Kultivierungsversuche mit Hefe – Wie gelingt der beste Pizzateig?

Unterrichtseinheit

Die entwickelte Unterrichtsreihe nutzt den eukaryotischen Organismus S. cerevisiae (Bäckerhefe), aufgrund seiner einfachen Kultivierungsbedingungen, zum Wissensaufbau zu biologischen Schlüsselbegriffen in den Themen Fermentation und mikrobielle Kinetik. Übergeordnetes Ziel ist das Erlernen von methodischen Strukturen zum wissenschaftlichen Arbeiten, bei der mithilfe von Versuchsreihen der Einfluss eines Parameters auf ein biologisches System untersucht wird. Dieser systematische Umgang mit Variablen innerhalb einer Versuchsreihe trägt zur Kompetenzförderung im Bereich Erkenntnisgewinnung im Rahmen der naturwissenschaftlichen Grundbildung bei.Wie gelingt der beste Pizzateig? Dieser Frage folgt das Unterrichtskonzept mit spannenden und einfachen Experimenten mit Hefe zu den Themen Fermentation und mikrobielle Kinetik . Der Versuchsaufbau ist für alle Hefe-Experimente identisch, kann aber in unterschiedlicher Komplexität durchgeführt und ausgewertet werden. Dadurch ist die Unterrichtsreihe sowohl in der Sekundarstufe 1 als auch 2 einsetzbar. Die Experimente bauen auf einen Grundversuch auf und können durch weitere Untersuchungen und Variation von Parametern ein vertiefendes Wissen innerhalb des Themas Enzymkinetik ermöglichen. Nach einer thematischen Einführung wird im Grundversuch die allgemeine grundlegende Aussage getroffen, dass Hefe ein wässriges Medium mit einem Substrat (Saccharose) und spezifisch günstige Temperaturbedingungen zwischen 35 °C bis 45 °C zum Wachstum benötigt. Diese Annahme wird mithilfe einer Versuchsreihe zu den Auswirkungen der Parameter Temperatur und Substrat auf das Hefewachstum untersucht. In der darauffolgenden Unterrichtsstunde folgen drei aufbauende Experimente (Versuch 1 bis 3), welche das Wissen zu Enzymen , deren Funktion und Kinetik als Biokatalysatoren erweitern. Bezüglich den Schwerpunkten Temperaturabhängigkeit, Substratspezifität und Substratkonzentration werden Datensätze mit den Experimenten generiert, die analytisch in einer Nachbereitungsstunde ausgewertet werden. Die beobachteten Reaktionen werden mit der Michaelis-Menten-Kinetik veranschaulicht. Dies ist möglich, da die Hefezellen vereinfacht als Biokatalysator angesehen werden können. In den Experimenten wird über die Bildung des Schaums (beziehungsweise des Kohlenstoffdioxids) auf das Wachstum geschlossen. Eine höhere Schaumbildungsrate liegt einer höheren $$CO_2$$ - Bildung zugrunde, was folglich ein verstärkter Stoffwechsel und mehr Zellen bedeutet. Die Hefe-Aktivität wird somit durch die Ausdehnung der Ansatzvolumina messbar und muss über einen Zeitraum von circa 10 Minuten in regelmäßigen Abständen dokumentiert werden. In Zusatzversuchen (Versuche 4 bis 6) können weitere Parameter wie der Einfluss unterschiedlicher Lösemittel (Wasser und Öl), die Auswirkung beim Zusatz von Salz und die Enzymkonzentration (Menge an Hefe) untersucht werden. Der Kontext zum Pizzabacken oder Backen von Hefeteigprodukten bietet alltagsnahen und altersgerechte Einstiegsmöglichkeiten für die Bildungsgänge der Sekundarstufe 1 und 2 dar. Mit der Plattform "Kniffelix" kann die Unterrichtsreihe durch ein digitales Lernangebot mit dem "Pizza-Rätsel" erweitert werden. Diese digitale Begleitung der Hefeversuche stellt Ergänzungen in Form von weiteren praktischen Aufgaben, Lernvideos, interaktiven digitalen Aufgaben zu den Versuchsreihen bereit. Das Thema "Hefe" im Biologie-Unterricht Die Stoffwechselleistung der Hefe macht sich der Mensch schon seit Jahrtausenden zunutze, beispielsweise beim Bierbrauen und Brotbacken. Heute gehört der Mikroorganismus Hefe zu den "Fabriken der Zukunft" und steht im Interesse der Forschung und Industrie zur Produktion von biotechnologischen Produkten wie Impfstoffe, Medikamente oder Chemikalien. Die Relevanz der Thematik steckt somit in der historisch wachsenden Bedeutung der Hefe in vielfältigen Forschungsfeldern sowie in der Jahrtausendlangen Verwendung zur Herstellung von Teigwaren in der heimischen Küche und alkoholischen Getränken. Vorkenntnisse Spezifische Vorkenntnisse der Lernenden sind nicht notwendig. Die theoretischen Hintergründe zu den Experimenten schaffen grundlegendes Wissen, wodurch sich die Experimente als Einstiegsthema zur Enzymkinetik eignen. Vorkenntnisse zur Zellatmung und alkoholischen Gärung können vorteilhaft sein und können durch wesentliche Erkenntnisschritte in der analytischen Auswertung der Experimente verdeutlicht werden. Didaktisch-methodische Analyse Die Experimente folgen einem forschungsorientierten methodischen Vorgehen und stehen im Zuge der Entwicklung der Experimentierkompetenz der Schülerinnen und Schüler im Kompetenzbereich Erkenntnisgewinnung. Die kontrollierte Variation der Untersuchungsparameter und der systematische Umgang mit Variablen fördert das Erlernen von methodischen Strukturen zum wissenschaftlichen Arbeiten im Rahmen der naturwissenschaftlichen Grundbildung. Die Experimente werden in Gruppenarbeit oder Partnerarbeit, je nach Klassen- oder Kursgröße, durchgeführt. Somit steht der Austausch mit Peers im Vordergrund, indem sich die Lernenden gegenseitig unterstützen und selbstständig den Experimentierprozess leiten. Besonderheit aller Experimente ist, dass alle verwendeten Geräte, Gebrauchs- und Verbrauchsmaterialien kostengünstig in Drogerien oder Lebensmittelgeschäften erhältlich oder sogar schon im Haushalt zu finden sind. Aufgrund dessen, durch die digitale Begleitung der Inhalte auf der Plattform "Kniffelix" und durch Videomaterial auf der Homepage des Lehrgebiets BioVT der TUK können die Experimente auch einfach von zu Hause durchgeführt werden und im Setting "Remote Learning" Einsatz finden. Eine zusätzliche Unterstützungsmöglichkeit bei der Durchführung des Unterrichtskonzepts ist die besondere methodische Herangehensweise in Experimentierkisten , welche nicht nur als Transportmedium für alle Materialien und Geräte dient, sondern auch den Wissenstransfer zwischen Universität und Schule symbolisiert und den Transport von Wissensgut ermöglicht. Für Lehrkräfte aus Rheinland-Pfalz und aus der Metropolregion Hamburg besteht die Möglichkeit diese Experimentierkisten auszuleihen. Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen (nach dem DigCompEdu Modell) Die Lehrenden sollten dazu in der Lage sein, die Unterrichtsreihe gezielt durch digitale Medien zu untermauern. Beispielsweise ist es möglich ein digitales Laborbuch zu den Versuchsreihen anzulegen und die Datenanalyse mit einer Softwarelösung vorzunehmen. Das digitale Laborbuch kann zur Dokumentation aber auch als Interaktionstool genutzt werden und im Rahmen eines kollaborativen Dokumenten-Tools umgesetzt werden. Die Lehrkraft soll so in der Lage sein, die Schülerinnen und Schüler zu befähigen, digitale Medien im Rahmen der Gruppenarbeiten zu nutzen, um die Kommunikation und Kooperation innerhalb der Lerngruppe zu verbessern. Die Lernenden können in der Form des digitalen Laborbuchs experimentelle Erkenntnisse und Fortschritte dokumentieren, diese kommunizieren und gemeinsam Auswertungen und Diskussionspunkte erarbeiten. Sicherzustellen sind Internetzugang und die Verfügbarkeit von Endgeräten für die Lerngruppe. Fachkompetenz Die Schülerinnen und Schüler führen exemplarisch Untersuchungen zu physiologischen Fragestellungen zu dem Zusammenhang von Kohlenstoffdioxidproduktion, Wachstum und Enzymkinetik, durch. erschließen sich Wechselwirkungen zwischen Lebensraum, dessen charakteristischen Faktoren (zum Beispiel Temperatur, Substrate) und dem artspezifischen angepassten Wachstum von Organismen. stellen auf Grundlage der Analyse der Experimente zu Enzymkinetik erste Zusammenhänge zur Michaelis-Menten-Kinetik da. Methodenkompetenz Die Schülerinnen und Schüler wenden im Experimentierprozess zur Erkenntnisgewinnung die kontrollierte Untersuchung der Variablen an, identifizieren die Störvariable, halten deren Auswirkungen gering und kontrolliert, um den Einfluss der abhängigen Variable zu untersuchen. nutzen naturwissenschaftliche Arbeitsweisen (zum Beispiel Experimentieren, Beobachten, Messen). Sozialkompetenz Die Schülerinnen und Schüler stehen in der Gruppenarbeit im Austausch mit der Peer-Gruppe, wodurch ein Peer-Coaching explizit erfordert wird. 21st Century Skills Die Schülerinnen und Schüler zeigen Kreativität bei dem Lösen der Problemstellungen der Experimente. analysieren die aus den Experimenten gewonnenen Daten, interpretieren und bewerten sie, um kritisch Rückschlüsse auf die Themen Enzymkinetik und Kultivierungsbedingungen zu ziehen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

ATP-Synthase – Synthese von Energieäquivalenten

Unterrichtseinheit

In dieser Unterrichtseinheit für den Biologie- und Chemie-Unterricht beschäftigen sich die Schülerinnen und Schüler mit der ATP-Synthase. Die Regeneration des zentralen zellulären Energieträgers wird zum überwiegenden Teil von der ATP-Synthase gewährleistet. Die hier vorgestellte Lernumgebung ermöglicht Schülerinnen und Schülern eine aktiv-forschende Auseinandersetzung mit der Funktionsweise dieses komplexen Enzyms. In der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" kommen dynamische Arbeitsblätter zum Einsatz. Dies sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen auch dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flashbasierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Die Struktur-Funktions-Beziehungen werden in der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als "Leitplanken" bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. "Informations-Popups" und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Die Schülerinnen und Schüler lernen die ATP-Synthase als Beispiel eines Enzyms kennen. lernen den Aufbau der ATP-Synthase kennen. erschließen ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend. lernen die Möglichkeiten des Molekülbetrachters Jmol kennen und lernen den Umgang mit dem Werkzeug. beschreiben am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms. Räumliche Vorstellung als Verständnisvoraussetzung Das Vorstellungsvermögen von Schülerinnen und Schülern in Bezug auf die dreidimensionale Struktur von Enzymen ist meist schwach ausgeprägt. In Schulbüchern werden die Lernenden häufig mit "flachen" und schematischen Darstellungen konfrontiert. Moderne Lehrwerke enthalten zwar schon dreidimensional wirkende Grafiken, die mit einer Molekülbetrachter-Software erzeugt wurden. Dennoch haben die Jugendlichen oft große Schwierigkeiten, sich den Aufbau von Enzymen vorzustellen. Das führt häufig zu Verständnisproblemen oder auch falschen Vorstellungen über den Aufbau und die Funktionsweise der Biokatalysatoren. Die Kenntnis der dreidimensionalen Strukturen ist jedoch die Voraussetzung für ein tieferes Verständnis der Natur der Enzyme, ihrer Funktionen, der Interaktion zwischen Enzym und Substrat und vor allem der engen Beziehung zwischen Struktur und Funktion. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Werden die interaktiven Applets zusammen mit Texten, Grafiken und Animationen in HTML-Seiten eingebettet, entsteht eine neue Form von Arbeitsmaterial - das dynamische Arbeitsblatt. Der Vorteil: Interaktive Materialien, Aufgaben und Hilfen stehen in einem Medium auf einen Blick zur Verfügung! Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot von einem der Arbeitsblätter zur ATP-Synthase. Hinweise zu dynamischen Arbeitsblättern mit interaktiven 3D-Molekülen und deren Einsatz im Biologie- oder Chemieunterricht finden Sie in dem Übersichtsartikel "Dynamische Arbeitsblätter mit 3D-Molekülen" . Struktur von Enzymen - ein schwer zu vermittelndes Thema Im Anschluss an die Behandlung von Glykolyse, Citratzyklus und Atmungskette integriert die hier vorgestellte Lernumgebung das zu Beginn des Themenbereichs "Stoffwechsel" erarbeitete Wissen über den Aufbau und die Funktion von Enzymen. Im Sinne eines Spiralcurriculums werden früher gelernte Grundlagen auf aktuelle Lerninhalte angewandt, wiederholt und eingeübt. Im Rahmen der funktionellen Vielfalt der Proteine lernen Schülerinnen und Schüler Enzyme als Biokatalysatoren kennen. Dabei bleibt deren Funktionsweise jedoch häufig unklar. Die Bildung eines Enzymsubstratkomplexes wird mit einer Schlüssel-Schloss-Analogie vermittelt. Diese vereinfachende Darstellung ist zwar einleuchtend, führt jedoch auch dazu, dass den Lernenden die Komplexität der Enzyme nicht bewusst wird. Sie haben daher Schwierigkeiten sich anschaulich vorzustellen, dass für jede biochemische Reaktion in der Zelle ein spezialisiertes Enzym zur Verfügung steht. Es fällt ihnen schwer, Strukturen von Enzymen mit deren Funktionen im Stoffwechsel in Zusammenhang zu bringen. Die ATP-Synthase - meist nur eine "Black Box" Im Themenbereich "Stoffwechsel" wird auch die Gewinnung von Energieäquivalenten in Form von ATP durch das Enzym ATP-Synthase angesprochen. Dies wird zumeist als Faktum präsentiert. Die Lernenden erfahren, dass das Enzym den Transport von Protonen (entlang ihres Konzentrationsgefälles) mit der Bildung von ATP aus ADP und anorganischem Phosphat koppelt. Dies wird in der Regel mithilfe "flacher" und statischer Darstellungen vereinfacht visualisiert. Ziel der 3D-Materialien: Zusammenspiel von Struktur und Funktion Für die in den Bildungsstandards geforderte Auseinandersetzung mit Struktur-Eigenschaftsbeziehungen in der Biologie bietet sich die Untersuchung von Proteinstrukturen eigentlich geradezu an. Das Problem: Mit "klassischen" Materialien verläuft das Unterfangen meist unbefriedigend. Häufig werden die molekularen Strukturen und deren Funktion im Unterricht auch unabhängig voneinander betrachtet, ohne den engen Zusammenhang zu thematisieren. Die hier vorgestellte Lernumgebung soll Abhilfe schaffen und die Lernenden am Beispiel der ATP-Synthase exemplarisch und anschaulich an die Untersuchung von Struktur-Funktions-Beziehungen heranführen. Die Lernumgebung der Unterrichtseinheit besteht aus HTML-Seiten, die mit gängigen Browsern betrachtet werden können. Die darin eingebetteten Darstellungen der Moleküle sind als Java-Applikationen plattformunabhängig. Die einzige Bedingung für ihre Nutzung ist, dass auf Ihrem Computer das kostenfreie Plugin Java Runtime Environment installiert ist. Für die verschiedenen Animationen benötigen Sie den ebenfalls kostenfreien Flash- oder Quicktime-Player. Eine Lenkung der Aufmerksamkeit der Schülerinnen und Schüler erfolgt bereits durch den formalen Aufbau der Arbeitsblätter. Jede Seite richtet den Blick auf einen anderen Aspekt der ATP-Synthase (Lokalisierung, F0- beziehungsweise F1-Struktur und -Funktion, Stator). Die vorgegebenen Beobachtungsaufträge sorgen dafür, dass den Lernenden die wesentlichen Informationen nicht entgehen. Die Arbeitsaufträge im unteren Feld sind durch Piktogramme als Beobachtungsaufgaben (Auge) und Schreibaufgaben (Stift) gekennzeichnet. Die eigenständige Entdeckungsreise der Schülerinnen und Schüler in den Struktur-Funktionszusammenhang der ATP-Synthase wird durch Zusatzinformationen (Popups) unterstützt. Sie beinhalten weitere nützliche Informationen, wie zum Beispiel zum Aufbau von ATP (Abb. 2, Platzhalter bitte anklicken) oder zum Modell des Protonentransports durch die Membran. Diese Informationsboxen können durch einen Klick auf die "i"-Piktogramme aufgerufen werden. Auf den dynamischen Arbeitsblättern zum molekularen Aufbau der F0- und F1-Struktur finden sich Buttons und Arbeitsaufträge "für Experten". Diese ermöglichen eine Binnendifferenzierung. Betrachtet wird hier die Verteilung hydrophiler und hydrophober Aminosäurereste im F1- und F0-Komlex. Dabei lässt sich sehr schön der Unterschied zwischen den transmembranen und den außerhalb der Membran liegenden Bereichen erkennen und thematisieren. Abb. 3 zeigt zwei Ansichten des F0-Komplexes. Hydrophile Aminosäuren sind rot, hydrophobe grün dargestellt. Die linke Teilabbildung zeigt den dem Intermembranraum zugewandten Teil des F0-Komplexes, während die rechte Teilabbildung einen Blick auf die der Lipidphase der Membran zugewendeten Proteinoberflächen zeigt. Abb. 4 zeigt den "Grundzustand" des F1-Komplexes in der Lernumgebung (linke Teilabbildung) sowie den F1-Komplex nach Aktivierung der Funktion "Hydrophobe und hydrophile Bereiche" (rechte Teilabbildung). Diese allgemeine Thematik wurde bereits bei der Besprechung des Membranaufbaus und des Membrantransports erwähnt. An dieser Stelle kann sie eindrucksvoll wiederholt beziehungsweise angewendet werden. Nach der Bearbeitung von Glykolyse, Citratzyklus und Atmungskette wird die ATP-Synthase als die "Maschine" vorgestellt, die den Protonengradienten über der inneren Mitochondrienmembran für die Synthese von ATP nutzt. Dabei werden pro gebildetem ATP drei Protonen durch die Membran befördert, um ein ATP-Molekül zu generieren (dies gilt für Bakterien, siehe Tabelle unten). Zum Einstieg wird per Beamer eine Animation präsentiert, die eine rotierende ATP-Synthase "in Aktion" zeigt (Abb. 5, Platzhalter bitte anklicken). Die Animation wurde von der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge) entwickelt. Eine kleine Version des Films befindet sich auch in der Lernumgebung. Für den Impuls per Beamerpräsentation sollte aber das größere Format verwendet werden, das im Internet zur Verfügung steht (siehe unten). Die Dynamik der Darstellung weckt das Interesse der Lernenden, eine Analyse der Abläufe ist jedoch (noch) nicht möglich. Das Interesse der Schülerinnen und Schüler kann durch folgende Daten weiter angefacht werden: Die ATP-Umsatzrate liegt in Bakterienzellen bei bis zu 2.500.000 Molekülen pro Sekunde! Ein Mensch setzt pro Tag (in Ruhe) etwa 70 Kilogramm ATP um. Der menschliche Körper enthält (bei einem Gewicht von etwa 70 Kilogramm) nur 50 bis 200 Gramm ATP, das nach dem Verbrauch überwiegend durch die ATP-Synthase regeneriert wird. Nach diesen Impulsen fordert die Lehrperson die Schülerinnen und Schüler auf, sich einzeln oder in Partnerarbeit mithilfe der dynamischen Arbeitsblätter den Aufbau und die Funktion der ATP-Synthase soweit zu erschließen, dass sie im Anschluss daran erklären können, was in der gezeigten Animation dargestellt ist: The rotary mechanism of mitochondrial ATP synthase Animation aus der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge). Infos und weitere Animationen finden Sie hier . Kapitel Die dynamischen Arbeitsblätter sollen das Augenmerk der Lernenden auf den Zusammenhang zwischen Struktur und Funktion der ATP-Synthase richten. Das komplexe Molekül wird dabei in seine Bauteile (F0, F1, Stator) "zerlegt". Die Lernumgebung gliedert sich in folgende Kapitel: Lokalisierung Hier wird die Lokalisierung der ATP-Synthase als integrales Membranprotein der inneren Mitochondrienmembran dargestellt. Die Lage des Enzyms in Bezug auf den durch die Atmungskette aufgebauten Protonengradienten wird thematisiert. (Die Lernumgebung beschränkt sich exemplarisch auf die ATP-Synthase und deren Orientierung in der Mitochondrienmembran. Die Lokalisierung des Enzyms in Bakterien und Chloroplasten kann bei Bedarf im Anschluss an die Bearbeitung der Lernumgebung erfolgen.) F0-Struktur Die Schülerinnen und Schüler machen sich hier mit dem Aufbau der Transmembraneinheit der ATP-Synthase vertraut. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet und interpretiert werden. F0-Funktion Die Lernenden erkunden das auf der Hypothese des deutschen Biophysikers Wolfgang Junge basierende Modell des Protonentransports durch die Membran. Die Vorgänge werden durch eine Flash-Animation dynamisch dargestellt. F1-Struktur Die Schülerinnen und Schüler untersuchen den Aufbau der "Kopf"-Struktur der ATP-Synthase. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet, interpretiert und mit der Verteilung im F0-Komplex verglichen werden. F1-Funktion Hier werden die Vorgänge bei der Synthese von ATP aus ADP und Phosphat in der Kopf-Struktur der ATP-Synthase untersucht und durch Videosequenzen dynamisch dargestellt (Quelle der Filme: ATP Synthase Group, MRC Dunn Human Nutrition Unit, Cambridge). Stator - Struktur und Funktion Die Lernenden setzen sich mit der Funktion der Verbindung zwischen Membran- und Kopfteil auseinander und setzen ihre bisherigen Erkenntnisse zu einem Gesamtbild der ATP-Synthase-Funktion zusammen. Der größte Teil des ATP wird bei Tieren, Pflanzen und den meisten Bakterien durch ATP-Synthasen gebildet. Ihr Aufbau unterscheidet sich in den verschiedenen Organismen in Details. Wie in der folgenden Tabelle zu erkennen, variiert zum Beispiel die Zahl der F0c-Untereinheiten und die Zahl der pro gebildetem ATP transportierten Protonen. ATP-Synthasen Anzahl der F0c-Peptide Protonen pro ATP Bakterien (Escherichia coli) 12 4 Mitochondrien (Hefe) 10 3,3 Chloroplasten (Spinat) 14 4,7 Das Grundprinzip der Struktur und der Funktion der ATP-Synthasen ist jedoch bei allen Organismen dasselbe. Alle in den dynamischen Arbeitsblättern dargestellten Moleküle zeigen den Aufbau der ATP-Synthase des Darmbakteriums Escherichia coli. Der Modellorganismus wurde und wird von den ATP-Synthase-Forschern intensiv untersucht. Das animierte Funktionsmodell in dem Kapitel "F0-Funktion", das die Be- und Entladung von F0c-Untereinheiten mit Protonen zeigt (Abb. 6), gibt ebenfalls die Verhältnisse bei Escherichia coli wider. Die Aminosäuren ASP 61 und ARG 210 sind die funktionellen Aminosäuren der ATP-Synthase des Bakteriums. In der ATP-Synthase von Mitochondrien und Chloroplasten übernimmt die ebenfalls saure Aminosäure Glutaminsäure (GLU) die Funktion der Asparaginsäure (ASP). In einem letzten Informations-Popup der Lernumgebung wird unter der Überschrift "Nur ein Modell" darauf hingewiesen, dass die dargestellte Funktionsweise der ATP-Synthase ein Modell ist, das den derzeitigen Stand der Forschung widerspiegelt. Es ist wichtig, die Schülerinnen und Schüler darauf hinzuweisen, dass der Mechanismus der ATP-Synthese noch nicht vollständig geklärt ist und dass sie sich hier in "Grenzgebieten" der aktuellen Forschung bewegen. Je nach Zeitreserve und Interesse der Lerngruppe können die noch offenen Fragen angesprochen werden. Zudem bietet sich hier eine allgemeine Diskussion über die Bedeutung und die Aussagekraft von Modellen in den Naturwissenschaften an. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II
ANZEIGE