• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Bunte Vielfalt – Extraktion und Quantifizierung von Photopigmenten aus Mikro-/Makroalgen

Unterrichtseinheit

Ziel ist es, den Lernenden einen erweiterten Horizont der Struktur-Funktions-Beziehung von photosynthetisch aktiven Strukturen in phototrophen Mikro- und Makroalgen und deren Wechselwirkungen mit dem artspezifischen Lebensraum zu erläutern. Neben den grünen Chlorophyllen und gelb-orangenen Carotinoiden in Pflanzen haben Cyanobakterien und Rotalgen zusätzliche Lichtantennenkomplexe entwickelt, die sogenannten Phycobilisome, die aus verschiedenen Phycobiliproteinen (blau: C-Phycocyanine und Allophycocyanin und rot: Phycoerythrine) bestehen. Zu diesem Zweck wurden einfach durchzuführende Experimente mit einer Unterrichtsreihe entwickelt, die den Lernenden der Sekundarstufe II die bunte Welt der Photopigmente und Phycobiliproteinen näherbringen sollen.Schon bereits etablierte Versuche zur Fest-Flüssig-Extraktion von Photopigmenten aus Zellen höherer Pflanzen öffnen den Schülerinnen und Schülern deren bunte Vielfalt und rücken das Blatt als Organ der Photosynthese in den Fokus. Analog zu diesen Methoden können Photopigmente und Phycobiliproteine aus den phototrophen Mikro- und Makroalgen gewonnen werden und ein neues Feld an Lehr-Lern-Kontexten und Relevanzen öffnen. Die dafür geeigneten und verwendeten Mikro- und Makroalgen Chlorella vulgaris (Mikroalge), Arthrospira platensis (Mikroalge) und Palmaria palmata (Makroalge) sind in schon pulverisierter Form leicht und kostengünstigen käuflich zu erwerben. Die in dem Versuchsprotokoll gewählte Methode folgt den standardisierten Versuchsschritten einer Fest-Flüssig-Extraktion. Das methodische Vorgehen kann für die Schülerinnen und Schülern anhand des Vorgehens bei dem Zubereiten von Kaffee leicht und alltagsnah erklärt werden. Für die Fest-Flüssig-Extraktion werden fünf Versuchsansätze mit den jeweiligen Extraktionsmittel (Wasser oder acetonhaltiger Nagellackentferner) gewählt, wobei alle verwendeten Materialien kostengünstig in Drogerien oder Lebensmittelgeschäften erhältlich sind und die erforderlichen Sicherheitsstandards in Schulen erfüllen. Darüber hinaus besteht die Möglichkeit, die beschriebenen Experimente auf verschiedene Bildungsniveaus zuzuschneiden. Zusammen mit dem dazu entwickelten Unterrichtskontext veranschaulichen die Experimente grundlegende chemische Konzepte in einem biologischen Kontext und führen wissenschaftliche Denk- und Arbeitsweisen ein. Die Experimente liefern weitere Lernkontexte, die neben der Einführung in die Methoden zur Fest-Flüssig-Extraktion auch Bezüge zur Löslichkeit von lipophilen und hydrophilen Pigmenten aus phototrophen Organismen schließen können und Lehr-Lern-Kontexte zu molekularer Polarität, zwischenmolekulare Kräfte und Löslichkeitskonzepte ermöglichen.Photopigmente nehmen eine wesentliche Rolle in der Photosynthese ein und halten demnach eine Funktionsvielfalt inne, die nahezu jeden Aspekt unseres Lebens beeinflusst. Sie können daher für Vorstellungen der Schülerinnen und Schüler von chemischen und biologischen Struktur-Funktions-Zusammenhängen in der realen Welt von entscheidender Bedeutung sein und tragen demnach eine einflussreiche Rolle im Wissensaufbau zu Charakteristika der Naturwissenschaften. Im Zuge des immer weiterwachsenden Trends zur pflanzenbasierten Ernährung erhalten Mikro- und Makroalgen Einzug in die Lebensmittelregale. In der Küche findet man sie nicht nur als Gewürz, sondern spielen auch ihre Pigmente als natürliche Farbstoffe in der Lebensmittel- und Textilindustrie eine wesentliche Bedeutung. Die alltagsnahe Relevanz eröffnet zahlreiche Potentiale diese Zusammenhänge im Chemieunterricht zu verdeutlichen und den Lernhorizont der Schülerinnen und Schüler zu erweitern. Vorkenntnisse von Lehrenden und Lernenden Spezifische Vorkenntnisse sind zur Durchführung der Unterrichtreihe vorteilhaft. Thematisch kann die Reihe in den biologischen Kontext der Photosynthese eingeordnet werden. Dabei sollten Begriffe wie beispielsweise Lichtsammelkomplexe, Photopigmente und deren Funktion im Lichtsammelkomplex höherer Pflanzen vorausgesetzt sein und das Bewusstsein der Vielfalt an phototrophen Organismen bestehen. Darüber hinaus sollten physikalische Zusammenhänge zur Optik und Begriffe wie Absorption, Absorptionsspektren, Wellenlänge verstanden sein. Im chemischen Kontext ist grundlegendes Wissen und Verständnis zu molekularen Polaritäten, zwischenmolekularen Kräften, Löslichkeitskonzepten und Chromatographie vorauszusetzen. Die Experimente zur Extraktion von Photopigmenten und Phycobiliproteinen aus Mikro- und Makroalgen folgen einem forschungsorientierten methodischen Vorgehen und stehen im Zuge der Entwicklung der Experimentierkompetenz der Schülerinnen und Schüler im Kompetenzbereich Erkenntnisgewinnung. Die Möglichkeit besteht die beschriebenen Experimente auf verschiedene Bildungsniveaus zuzuschneiden, vielfältig auszuweiten und detaillierte Fokussierung von mehreren Themenkomplexen fachspezifisch herauszustellen. Aufgebaut ist die Unterrichtsreihe auf der Analyse der Pigmentzusammensetzung der Mikro- und Makroalgen in Abhängigkeit des verfügbarem Lichtspektrums beziehungsweise der verfügbaren Lichtqualität und Temperaturen und zielt auf die besondere Fähigkeit der Cyanobakterien zur chromatischen Adaption, um so die Photosyntheseffizienz zu steigern. Die artspezifische Pigmentzusammensetzungen werden durch die Experimente qualitativ sowie quantitativ für die Schülerinnen und Schüler sichtbar und photometrisch messbar. Voraussetzung ist die Verfügbarkeit von photometrischen Messgeräten in der Schule beziehungsweise auf das portable, modulare und kostengünstige Low-Cost-Photometer von desklab zurückgegriffen werden. Der Austausch mit Peers steht aufgrund der Gruppenarbeit oder Paararbeit, je nach Kursgröße, im Vordergrund. Bei dem Experimentieren unterstützen sich so die Schülerinnen und Schüler gegenseitig und leiten selbstständig den Experimentierprozess. Besonderheit aller Experimente ist, dass alle verwendeten Geräte, Gebrauchs- und Verbrauchsmaterialien kostengünstig in Drogerien oder Lebensmittelgeschäften erhältlich oder sogar schon im Haushalt zu finden sind. (Hinweis: Eine zusätzliche Unterstützungsmöglichkeit bei der Durchführung des Unterrichtskonzepts ist die besondere methodische Herangehensweise in Experimentierkisten, welche nicht nur als Transportmedium für alle Materialien und Geräte dient, sondern auch den Wissenstransfer zwischen Universität und Schule symbolisiert und den Transport von Wissensgut ermöglicht. Für Lehrkräfte aus Rheinland-Pfalz besteht die Möglichkeit diese Experimentierkiste auszuleihen.) Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen (nach dem DigCompEdu Modell) Die Lehrenden sollten dazu in der Lage sein, die Unterrichtsreihe gezielt durch digitale Medien zu untermauern. Beispielsweise ist es möglich, ein digitales Laborbuch zu den Versuchsreihen anzulegen und die Datenanalyse mit einer Softwarelösung vorzunehmen. Das digitale Laborbuch kann zur Dokumentation aber auch als Interaktionstool genutzt werden und im Rahmen eines kollaborativen Doc's-Tool umgesetzt werden. Die Lehrkraft soll so in der Lage sein, die Lernende zu befähigen, digitale Medien im Rahmen der Gruppenarbeiten zu nutzen, um die Kommunikation und Kooperation innerhalb der Lerngruppe zu verbessern. Die Lernenden können in der Form des digitalen Laborbuches experimentelle Erkenntnisse und Fortschritte dokumentieren, diese kommunizieren und gemeinsam Auswertungen und Diskussionspunkte erarbeiten. Sicherzustellen sind Internetzugang und die Verfügbarkeit von Endgeräten für die Schülerinnen und Schüler. Fachkompetenz Die Schülerinnen und Schüler führen eigenständig Experimente zur Extraktion von Photopigmenten und Phycobiliproteinen aus Mikro- und Makroalgen durch und verwenden die Photometrie als analytische Methode zur Quantifizierung der Pigmentzusammensetzungen der unterschiedlichen Mikro- und Makroalgen. beschreiben die chemischen Eigenschaften und Funktionen der grünen Chlorophyllen, gelb-orangenen Carotinoiden und die sogenannten Phycobilisome, die aus verschiedenen Phycobiliproteinen (blau: C-Phycocyanine und Allophycocyanin und rot: Phycoerythrine) bestehen, im Lichtantennenkomplex von Mikro- und Makroalgen. erläutern Struktur-Funktions-Beziehung von photosynthetisch aktiven Strukturen in phototrophen Mikro- und Makroalgen und deren Wechselwirkungen mit dem artspezifischen Lebensraum. Methodenkompetenz Die Schülerinnen und Schüler wenden im Experimentierprozess zur Erkenntnisgewinnung den systematischen Umgang mit Variablen an, um den Einfluss der abhängigen Variable zu untersuchen. setzen die angewandten Methoden und experimentellen Vorgehensweisen in den einzelnen Versuchsschritten in Zusammenhang mit der dadurch implizierten Wirkung und definieren beispielsweise das Mörsern als eine Methode zum mechanischem Zellaufschluss. nutzen naturwissenschaftliche Arbeitsweisen (zum Beispiel Experimentieren, Beobachten, Messen, ...). Sozialkompetenz Die Schülerinnen und Schüler stehen in der Gruppenarbeit im Austausch mit der Peer-Gruppe, wodurch ein Peer-Coaching explizit erfordert wird. 21st Century Skills Die Schülerinnen und Schüler analysieren die aus den Experimenten gewonnen Daten, interpretieren und bewerten sie, um Rückschlüsse auf die industrielle Verwendung der Mikro-/Makroalgen zu ziehen. kommunizieren Mikro-/Makroalgen als eine biotechnologische Lösung im Hinblick auf den Klimawandel. Literaturhinweise Zum Nachlesen: Zu der Versuchsreihe erscheint ein Artikel in der Zeitschrift "Journal of Chemical Education": L., Geuer; N., Erdmann; M., Lorenz; H., Albrecht; T., Schanne; M., Cwienczek; D., Geib; D., Strieth; R., Ulber; Colourful diversity - Modified methods for extraction and quantification of photopigments and phycobiliproteins isolated from phototrophic micro- and macroalgae" in der Zeitschrift "Journal of Chemical Education; Journal of Chemical Education; (2022) angenommen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt
  • Sekundarstufe I

Kleben mit van der Waals

Unterrichtseinheit

Animierte GIF-Bilder, die Untersuchung der Frage „Warum fällt der Gecko nicht von der Decke?“ und der Bezug zu den spannenden Forschungsgebieten Nanotechnologie und Bionik wecken das Interesse an dem zwar wichtigen, aber eher „unscheinbaren“ Phänomen und fördern das Verständnis der Lernenden.Die Besprechung zwischenmolekularer Kräfte ist essenzieller Bestandteil des Chemieunterrichts. Siedepunkte und Löslichkeiten unpolarer Verbindungen werden auf van-der-Waals-Kräfte und deren Abhängigkeit von den Teilchenoberflächen zurückgeführt. Die zugrundeliegenden Vorgänge in den Elektronenhüllen bleiben jedoch zunächst unanschaulich und abstrakt. Mithilfe des Computers kann durch den Einsatz animierter Bilder (GIF-Dateien) die Anschaulichkeit erhöht werden. Insbesondere eröffnen aktuelle Forschungsergebnisse aus den Bereichen Bionik und Nanotechnologie die Chance eines völlig neuen und sehr motivierenden Einstiegs in das ?dröge? Thema: der Gecko und die van-der-Waals-Kraft! Aufwand und technische Voraussetzungen Die hier vorgestellten Bilder zeigen zwei Eigenversuche, mit animierten Dateien die Existenz temporärer Dipole beziehungsweise das Entstehen von van-der-Waals-Kräften einsichtiger zu machen. Darstellungen dieser Art sind - mit entsprechendem Zeitaufwand - natürlich noch erheblich ausbau- und verbesserungsfähig. Das vorgestellte Ergebnis (Zeitaufwand etwa 30 Minuten) erscheint aber für den "Normalunterricht" bereits als guter Kompromiss zwischen Aufwand und Ertrag. Zur Erstellung der Animationen werden ein Grafikprogramm (Erzeugung der Einzelbilder im GIF-Format) und ein sogenannter "GIF-Animator" (Zusammenfügen der Einzelbilder zum "Film") benötigt. Entsprechende Programme stehen im Internet auch zum kostenlosen Download zur Verfügung (siehe Internetadressen). Praktische Tipps Erzeugen Sie zunächst eine Bilddatei mit den unveränderlichen Teilen der Animation (zum Beispiel der Strukturformel oder der äußeren Form des Teilchens) und kopieren Sie diese Datei - entsprechend der Anzahl der notwendigen Einzelbilder - jeweils mit einem Zahlenindex im Dateinamen (zum Beispiel "vanderw1.gif", "vanderw2.gif", "vanderw3.gif" ... ). Ergänzen Sie dann jede Datei mit den "variablen" Bildteilen (Abb. 1). Die linke Animation besteht aus zehn Einzelbildern, die im Film jeweils zwischen 0,2 Sekunden und einer Sekunde erscheinen. Die beiden roten Punkte stellen das Elektronenpaar der Bindung zwischen den Kohlenstoff-Atomen dar. Unterhalb des Ausschnitts werden die Größen der jeweiligen Teilladungen der beiden Kohlenstoff-Atome des Moleküls visualisiert. Schwarz dargestellte Teilladungen sind stark, grau dargestellte Teilladungen schwach (entsprechend den Aufenthaltsorten der beiden Elektronen). Zwischendurch sind keine Teilladungen vorhanden. Die zweite Animation besteht aus acht Einzelbildern und zeigt die Oberflächen zweier Teilchen. Die Ladungsverteilungen werden durch die Intensität der Farbe dargestellt. Die Schülerinnen und Schüler können hier selbstständig erkennen und erklären, wie die van-der-Waals-Kraft zwischen zwei Teilchen durch temporäre Dipole entsteht. Motivierender Einstieg Geckos - kleine bis mittelgroße Echsen, zwischen vier und vierzig Zentimeter lang - können mühelos "kopfüber" an Zimmerdecken laufen. Einige Schülerinnen und Schüler werden dieses Phänomen aus dem Urlaub in südlichen Ländern aus eigener Beobachtung kennen. Die Tiere scheinen regelrecht selbst an glatten Oberflächen zu "kleben". Ihre Haftkraft ist so stark, dass sie sogar nur mit einem Fuß sicher an der Decke hängen können. Forschungen auf dem Gebiet der Bionik und der Nanotechnologie haben gezeigt, dass das Anhaften des Geckos auf van-der-Waals-Kräften beruht. Die Füße der Tiere sind dicht mit sogenannten Spatulae - feinen, rund 200 Nanometer dünnen Härchen - bedeckt, die trotz der "eigentlich" schwachen van-der-Waals-Kraft in ihrer Summe diese starke Wechselwirkung mit dem "Untergrund" bewirken. (Nach den Aussagen der Forscher müsste ein Mensch allerdings mit nur etwa zehn Nanometer dicken Härchen ausgerüstet sein, um es dem Gecko gleichtun zu können ... ). Dieses Phänomen ermöglicht einen weitaus motivierenderen Einstieg in das Thema als etwa die (zunächst nur für die Lehrkraft interessante) Problematik ansteigender Siedepunkte innerhalb homologer Reihen. Derartige Siedepunktsunterschiede, zum Beispiel auch diejenigen zwischen unterschiedlich verzweigten Isomeren, erscheinen Schülerinnen und Schülern nach dem Einstieg in die Thematik über den Gecko geradezu als Selbstverständlichkeit. Mögliche technische Anwendungen Wenn es gelänge, nach dem Vorbild der Natur solche feinen Hafthärchen nachzubauen, eröffneten sich vielfältige Anwendungsmöglichkeiten: Bauteile könnten ohne Klebstoff aneinander haften, wiederverwendbare Klebebänder könnten befestigt und ohne Spuren wieder entfernt werden oder kleine Roboter wie die Geckos Wände hochklettern, entlegene Winkel erforschen oder Reparaturen durchführen.

  • Chemie / Natur & Umwelt

Die Oberflächenspannung des Wassers

Unterrichtseinheit

Kurze Flash-Animationen (Flash-Folien), die im Rahmen des Unterrichtsgesprächs von der Lehrperson per Beamer projiziert werden, unterstützen bei den Schülerinnen und Schülern die Entwicklung einer anschaulichen Vorstellung zur Oberflächenspannung des Wassers.In der Bindungslehre wird das Wassermolekül als Beispiel für ein Molekül mit polarer Elektronenpaarbindung behandelt. Der Versuch zur Ablenkung eines Wasserstrahls dient dabei als Grundlage für die Erarbeitung der Dipoleigenschaft der Wassermoleküle. Zur Erklärung der Ablenkung werden zumeist einzelne Moleküle mit entsprechender Orientierung zum elektrisch geladenen Stab an der Tafel dargestellt. Mit den hier vorgestellten Flash-Folien lassen sich die Dipoleigenschaften der Wassermoleküle en bloc thematisieren und die Eigenschaften der Grenzschicht des Wassers zum Luftraum untersuchen. Ebenfalls per Beamer projizierte dynamische 3D-Moleküle können der Bildung von Wasserstoffbrücken im Wasser zu einer ?Plastizität? verhelfen, die durch zweidimensionale Abbildungen aus dem Schulbuch nicht erzielt werden kann. Nach dem Einsatz der Flash-Folien bietet sich im Fortgang des Unterrichts die Durchführung eines analogen Experiments zur Minderung der Oberflächenspannung an. Hinweise zum Einsatz der Materialien Informationen zum Aufbau, zur Steuerung und zu den Inhalten der einzelnen Flash-Folien mit Screenshots Wassermoleküle und Wasserstoffbrücken in 3D Während des Unterrichtsgesprächs per Beamer projizierte 3D-Moleküle verhelfen der Wasserstoffbrückenbildung im Wasser zu mehr "Plastizität". Die Schülerinnen und Schüler sollen die Organisation der Wassermoleküle im Stoff Wasser kennen lernen. erkennen, dass der Wasserkörper durch die Anziehungskräfte zwischen den Dipolmolekülen einerseits stabilisiert und zusammengehalten wird, andererseits aber auch die Fluidität des Stoffes Wasser gegeben ist. erkennen, dass die Wassermoleküle an der Wasseroberfläche von den Wassermolekülen im Inneren des Wasserkörpers angezogen ("festgehalten") werden. aus den animierten Versuchen (Experiment 1 und 2: "Schwimmversuche" mit einer Büroklammer) ableiten, dass die Anziehungskräfte zwischen den Wassermolekülen an der Wasseroberfläche einen "Anspannungszustand" (die Oberflächenspannung) bewirken, der bei mechanischen Einflüssen auf die Wasseroberfläche sichtbar wird. Funktionalitäten Das Abspielen und das Anhalten der Animationen wird über Start- und Stopp-Buttons mit den gängigen Symbolen gesteuert (Abb. 1, Platzhalter bitte anklicken). Alternativ kann dies auch ohne Maus über die "Space-Taste" erfolgen (sowohl "Start" als auch "Stopp"). Der Schieberegler kann von Hand (bei gedrückter linker Maustaste) nach rechts oder links gezogen und so als Funktion "Zeitraffer vor" beziehungsweise "Zeitraffer zurück" genutzt werden. Themenübersicht Das Flash-Paket bietet fünf Animationen. Über die Buttons des rechten Menüs kann zwischen den folgenden Flash-Folien gewechselt werden: Animation 1 Was hält die Wassermoleküle zusammen? Animation 2 Experiment 1: Was passiert an der Wasseroberfläche, wenn man sie mit der Spitze einer Büroklammer berührt und die Büroklammer loslässt? Animation 3 Erklärung zu Experiment 1 Animation 4 Experiment 2: Was passiert an der Wasseroberfläche, wenn man eine Büroklammer waagerecht auf die Oberfläche setzt und sie dann loslässt? Animation 5 Erklärung zu Experiment 2 Folie 1: Was hält die Wassermoleküle zusammen? Die erste Folie zeigt einen quaderförmigen Ausschnitt aus einem Gefäß mit Wasser (Darstellung auf der Teilchenebene). Das Realobjekt wird in einem kleinen Foto links oben gezeigt (siehe Abb. 1). Auf der submikroskopischen Ebene zeigen die Wassermoleküle Zitterbewegungen. Diese sind in der Animation vereinfacht dargestellt. Die Wassermoleküle liegen dicht nebeneinander und füllen den gesamten Raum vom Boden des Gefäßes bis zur Wasseroberfläche aus. Die Wasseroberfläche ist makroskopisch betrachtet glatt (Schwerkraftwirkung). Beim Abspielen der Flash-Folie wird die Frage nach dem Zusammenhalt der Wassermoleküle gestellt. Aus der Unterrichtssystematik ist das Wassermolekül als Dipolmolekül bereits bekannt. Die Dipol-Dipol-Wechselwirkungen werden in dem Modell dargestellt (Abb. 2). (Das Verdampfen von Wassermolekülen in Abhängigkeit von der Temperatur lässt sich anschließend thematisieren.) Folie 2: Die untergehende Büroklammer Die zweite Flash-Folie zeigt das Verhalten der Wassermoleküle an der Wasseroberfläche beim senkrechten Aufsetzen einer Büroklammer (Abb. 3). Die Schülerinnen und Schüler beobachten, dass die Oberflächenschicht aus Wassermolekülen dabei zunächst folienartig eingedrückt wird, sich dann öffnet ("reißt") und - nach dem Untergang der Klammer - wieder schließt. Diesen Vorgang kann die Lehrperson über den Schieberegler vor und zurücklaufen lassen. Die Lernenden beschreiben ihre Beobachtungen und nehmen dabei gegebenenfalls Bezug auf ein zuvor durchgeführtes Schülerexperiment zum Thema "Kann eine Büroklammer schwimmen?". Folie 3. Erklärung des Experimentes Diese Animation zeigt erneut den Vorgang des Versinkens der senkrecht aufgesetzten Büroklammer aus der vorhergegangenen Flash-Folie. Der Vorgänge und die dabei wirkenden Kräfte werden hier jedoch per Text und Bild erläutert (Abb. 4) Folie 4: Die schwimmende Büroklammer Die vierte Animation zeigt das Verhalten der Wassermoleküle an der Wasseroberfläche beim waagerechten Aufsetzen einer Büroklammer. Starten Sie den Film über den Start-Button oder einfach ohne Mausaktion per "Space-Taste". Die Schülerinnen und Schüler beobachten, dass das Gewicht der Büroklammer auf eine maximale Fläche verteilt wird. Die Wasseroberfläche wird gleichmäßig eingedrückt und trägt die Klammer (Abb. 5). Folie 5. Erklärung des Experimentes Auch hier wird die Animation des vorausgegangenen Experimentes - waagerechtes Aufsetzen der Büroklammern auf die Wasseroberfläche - wiederholt. Der Vorgang und die dabei wirkenden Kräfte werden wiederum per Text und Bild erklärt (Abb. 6). 3D-Visualisierungen mit Molekülbetrachtern Die vorgestellten Flash-Folien unterstützen die Entwicklung einer anschaulichen Vorstellung von den bei der Oberflächenspannung wirkenden Kräfte. Wasserstoffbrücken spielen dabei eine zentrale Rolle. Die dritte Dimension wird dabei jedoch nur angedeutet. Diese Lücke kann durch so genannte Molekülbetrachter geschlossen werden (zum Beispiel Jmol ). Mithilfe dieses kostenfrei zur Verfügung stehendem Werkzeugs können 3D-Moleküle am Bildschirm mit dem Cursor bei gedrückter linker Maustaste "angefasst", gedreht und gewendet werden. Abb. 7 zeigt zwei Ausschnitte aus einer Animation von Eric Martz, die zu Beginn zwei Reihen ordentlich aufgereihter Wassermoleküle zeigt (Teilabbildung a). Nach dem Start der Animation sorgen die zehn Wassermoleküle per Wasserstoffbrückenbildung für eine Energieminimierung (Teilabbildung b). Während des gesamten Vorgangs können Sie das Molekül-Ensamble mit der Maus "anfassen", frei drehen und aus verschiedenen Perspektiven betrachten.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I
ANZEIGE