• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
Sortierung nach Datum / Relevanz
Kacheln     Liste

Gravitationswellen: erster direkter Nachweis mit Interferometern

Unterrichtseinheit

Diese Unterrichtseinheit thematisiert den ersten erfolgreichen Nachweis von Gravitationswellen, der 2015 mithilfe zweier riesiger Laser-Interferometer in den USA gelang. Quelle des Ereignisses war die Verschmelzung zweier eng umeinanderkreisender Schwarzer Löcher in einer Entfernung von 1,3 Milliarden Lichtjahren. Die Arbeitsblätter zum ersten direkten Nachweis von Gravitationswellen bauen auf einem Erklärvideo aus der Mediathek der Lindauer Nobelpreisträgertagungen auf. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.In dieser Unterrichtseinheit erarbeiten die Schülerinnen und Schüler einige wichtige physikalische Zusammenhänge des als sensationell eingestuften Beobachtungsergebnisses, das den ersten direkten Nachweis von Gravitationswellen darstellte. Thematisiert werden: die Umlauffrequenz, der Abstand und die Bahngeschwindigkeit der beiden Schwarzen Löcher, die Frequenz und die Amplitude der Gravitationswelle am Ort der Beobachtung sowie die Lokalisierung der Quelle am Himmel. Die Materialien sind so angelegt, dass die Schülerinnen und Schüler ihre Rechenergebnisse stets mit den Daten aus den Originalveröffentlichungen zu dem Gravitationswellenereignis GW150914 vergleichen können. Sie erfahren dabei auch, dass die klassische Gravitationsphysik nach Newton bei der Beschreibung des vorliegenden Phänomens an ihre Grenzen stößt und die Allgemeine Relativitätstheorie von Albert Einstein durch den direkten Nachweis von Gravitationswellen eine weitere wichtige Bestätigung findet. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Gravitationswellen im Unterricht Das Thema Gravitationswellen berührt verschiedene Inhalte der Oberstufenphysik. Insbesondere sind Themen wie Gravitation, Kreisbewegungen und das Michelson-Interferometer von besonderer Relevanz – aber auch Grundkenntnisse der Physik Schwarzer Löcher und Neutronensterne spielen für das Verständnis des Phänomens Gravitationswellen eine wichtige Rolle. In den Lehrplänen sind die Allgemeine Relativitätstheorie und ihre Folgerungen gar nicht oder nur ansatzweise enthalten. Dennoch lassen viele schulinterne Curricula durchaus Luft für besondere Themen, wie zum Beispiel für dieses brandaktuelle Forschungsgebiet der Gravitationswellenastronomie. Gut lässt sich die Thematik in Astronomie-Kurse der Oberstufe, Projektkurse oder Arbeitsgemeinschaften einbauen. Vorkenntnisse Die Lernenden sollten mit dem Gravitationsgesetz Newtons und der Physik der Kreisbewegungen vertraut sein. Auch Begriffe aus der Wellenlehre wie Frequenz, Wellenlänge und Amplitude sollten bekannt sein. Astronomisches Grundwissen, auch zum Thema Schwarze Löcher (auch Schwarzschildradius), ist durchaus hilfreich; es kann aber durch Recherche oder Lehrerhilfe auch während der Bearbeitung der Unterrichtseinheit zum Nachweis von Gravitationswellen vermittelt werden. Dies gilt in ähnlicher Weise ebenso für den Aufbau und die Funktionsweise eines Michelson-Interferometers. Didaktische Analyse Die Berechnungen zu Gravitationswellen beruhen auf der Allgemeinen Relativitätstheorie. Da diese in der Regel schulisch nicht thematisiert wird, ist die Frage berechtigt, ob ein Thema wie Gravitationswellen im normalen Schulalltag überhaupt so umgesetzt werden kann, dass der Unterricht über eine rein qualitative Betrachtung hinausgeht. Die Materialien dieser Unterrichtseinheiten zeigen, dass dies möglich ist, denn viele Rechnungen lassen sich zunächst rein klassisch, also mit der Gravitationsphysik Newtons, durchführen. Dass sich an einigen Stellen, wie beispielsweise bei der Berechnung der Umlaufgeschwindigkeit der Schwarzen Löcher, dann eine deutliche Diskrepanz zu den Vorhersagen der Einstein‘schen Physik zeigt, ist didaktisch positiv zu werten. Es ist aber auch didaktisch vertretbar, fertige Formeln aus der Relativitätstheorie vorzugeben und die Schülerinnen und Schüler nur die entsprechenden Rechnungen durchführen zu lassen. Dies ist zum Beispiel bei der Berechnung der Gravitationswellen-Amplitude der Fall. So lernen die Schülerinnen und Schüler zum einen, dass die Relativitätstheorie das geeignete Handwerkzeug zur Beschreibung extremer physikalischer Verhältnisse zur Verfügung stellt. Zum anderen erfahren sie aber auch, dass ihre Kenntnisse der Mathematik und Physik aus der Oberstufe ausreichen, um sich den Vorhersagen der Theorie und den veröffentlichten Messdaten zu nähern. Methodische Analyse Ein Ziel dieser Unterrichtseinheit zum direkten Nachweis von Gravitationswellen besteht darin, dass die Lernenden erfahren, dass sie mithilfe oberstufenüblicher Inhalte aus Mathematik und Physik in der Lage sind, Erkenntnisse zum Gravitationswellenereignis GW150914 eigenständig herzuleiten und zu berechnen. So werden mithilfe der Newtonschen Physik Formeln für den Abstand und die Umlaufgeschwindigkeit zweier gleich schwerer, sich gegenseitig umkreisender Massen hergeleitet. Mithilfe der Gravitationswellenfrequenzen aus den Aufzeichnungen der LIGO-Interferometer können die Lernenden dann Ergebnisse für den Abstand und die Bahngeschwindigkeit der Schwarzen Löcher berechnen, mit den Angaben aus den Originalveröffentlichungen vergleichen und so die Möglichkeiten und Grenzen der klassischen Physik erkunden. Fachkompetenz Die Schülerinnen und Schüler leiten mithilfe von Gravitationsgesetz und Gesetzen der Kreisbewegung Formeln zum Abstand und zur Bahngeschwindigkeit her. berechnen physikalische Größen mit komplexen Formeln. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Paar- oder Gruppenarbeit. diskutieren in Paar- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Paar- und Gruppenarbeit angemessen und verständlich im Plenum dar. Hier können Sie sich das Video zur Unterrichtseinheit "Gravitationswellen: erster direkter Nachweis mit Interferometern" anschauen.

  • Physik / Astronomie
  • Sekundarstufe II

Gravitationswellen: erster indirekter Nachweis mit Pulsar

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema "Gravitationswellen" behandelt deren ersten indirekten Nachweis im Jahr 1974 durch Messung der Umlaufdauer eines Pulsars in einem Binärsystem. Zwei Neutronensterne, einer davon ist ein Pulsar, umkreisen sich auf stark elliptischen Bahnen. Dieses System stellt ein ideales Testlabor für die Vorhersagen der Allgemeinen Relativitätstheorie dar. Dabei treten zwei relativistische Effekte besonders stark zutage: die Drehung der Bahn-Ellipse des Pulsars (Periastrondrehung) und die Verringerung der Umlaufdauer des Pulsars aufgrund der Abstrahlung von Gravitationswellen. Beide Effekte werden in dieser Unterrichtseinheit thematisiert, wobei der Schwerpunkt auf dem Thema Gravitationswellen liegt. Die Materialien nehmen Bezug auf ein Erklärvideo aus der Mediathek der Lindauer Nobelpreisträgertagungen. Zu diesem Video finden Sie bei Lehrer-Online noch zwei weitere Unterrichtseinheiten, welche die Sonnenfinsternis-Expedition im Jahr 1919 (1974) sowie den ersten direkten Nachweis von Gravitationswellen mithilfe von Laser-Interferometern im Jahr 2015 – also die Vorgeschichte beziehungsweise die weitere Entwicklung der Forschung in diesem Bereich – zum Inhalt haben und ergänzend zur vorliegenden Einheit im Unterricht eingesetzt werden können. Das Thema Gravitationswellen im Unterricht Das Thema Gravitationswellen berührt verschiedene Inhalte der Oberstufenphysik. Insbesondere sind Themen wie Gravitation, Kreisbewegungen und das Michelson-Interferometer von besonderer Relevanz – aber auch Grundkenntnisse der Physik Schwarzer Löcher und Neutronensterne spielen für das Verständnis des Phänomens Gravitationswellen eine wichtige Rolle. In den Lehrplänen sind die Allgemeine Relativitätstheorie und ihre Folgerungen gar nicht oder nur ansatzweise enthalten. Dennoch lassen viele schulinterne Curricula durchaus Luft für besondere Themen, wie zum Beispiel für das brandaktuelle Forschungsgebiet der Gravitationswellen-Astronomie. Gut lässt sich die Thematik in Astronomiekurse der Oberstufe, Projektkurse oder Arbeitsgemeinschaften einbauen. Didaktische Analyse Die Berechnungen zu Gravitationswellen beruhen auf der Allgemeinen Relativitätstheorie. Da diese in der Regel schulisch nicht thematisiert wird, ist die Frage berechtigt, ob ein Thema wie Gravitationswellen im normalen Schulalltag überhaupt so umgesetzt werden kann, dass der Unterricht über eine rein qualitative Betrachtung hinausgeht. Die Materialien dieser Unterrichtseinheiten zeigen, dass dies möglich ist, denn viele Rechnungen lassen sich zunächst rein klassisch, also mit der Gravitationsphysik Newtons, durchführen. Dass sich an einigen Stellen, wie beispielsweise bei der Berechnung der Umlaufgeschwindigkeit der Schwarzen Löcher, dann eine deutliche Diskrepanz zu den Vorhersagen der Einsteinschen Physik zeigt, ist didaktisch positiv zu werten. Es ist aber auch didaktisch vertretbar, fertige Formeln aus der Relativitätstheorie vorzugeben und die Schülerinnen und Schüler nur die entsprechenden Rechnungen durchführen zu lassen. So lernen die Schülerinnen und Schüler zum einen, dass die Relativitätstheorie das geeignete Handwerkzeug zur Beschreibung extremer physikalischer Verhältnisse zur Verfügung stellt. Zum anderen erfahren sie aber auch, dass ihre Kenntnisse der Mathematik und Physik aus der Oberstufe ausreichen, um sich den Vorhersagen der Theorie und den veröffentlichten Messdaten zu nähern. Methodische Analyse Ein Ziel dieser Unterrichtseinheit besteht darin, dass die Lernenden erfahren, dass sie mithilfe oberstufenüblicher Inhalte aus Mathematik und Physik in der Lage sind, sich bestimmten Vorhersagen der Allgemeinen Relativitätstheorie von Albert Einstein zu nähern. Dies gelingt im Fall der Periastron-Verschiebung der Bahnellipse durch die Verwendung einer Computersimulation. Für die Berechnung der Umlaufdauer und des Abstandes der beiden Neutronensterne sowie des Energieverlustes aufgrund von Gravitationswellen werden Formeln der klassischen Physik (Newton) und eine Formel aus der Allgemeinen Relativitätstheorie bereitgestellt. Mithilfe von Daten aus Originalveröffentlichungen zur Physik des Neutronensternsystem PSR1913+16 sind die Schülerinnen und Schüler dann in der Lage, wichtige Größen des Systems für das Jahr 2020 vorauszuberechnen und mit der Prognose aus der Allgemeinen Relativitätstheorie zu vergleichen. Vorkenntnisse Die Lernenden sollten mit dem Gravitationsgesetz Newtons und der Physik der Kreisbewegungen vertraut sein und über Kenntnisse zu den Keplergesetzen verfügen. Die Berechnungen erfordern einen sicheren Umgang mit dem Taschenrechner, insbesondere die Behandlung von hohen Zehnerpotenzen und Zahlen mit vielen Nachkommastellen. Auch die Verwendung von Speicherstellen des Taschenrechners sollte beherrscht werden, da dies manche Berechnungen erheblich vereinfacht. Darüber hinaus sollten die Schülerinnen und Schüler keine Scheu vor großen Formeln haben. Fachkompetenz Die Schülerinnen und Schüler… erkennen, dass die Drehung der Bahn-Ellipse den Vorhersagen der Relativitätstheorie entspricht. berechnen physikalische Größen mit komplexen Formeln. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler… können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. Sozialkompetenz Die Schülerinnen und Schüler… arbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. diskutieren in Partner- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Partner- und Gruppenarbeit angemessen und verständlich im Plenum dar. Müller, Andreas (2017). 10 Dinge, die Sie über Gravitationswellen wissen wollen. Berlin: Springer.

  • Physik / Astronomie
  • Sekundarstufe II

Mikrogravitation – Stahlkugel und Luftblase in Glycerin

Unterrichtseinheit

Schülerinnen und Schüler entwickeln für ein Fallkapselsystem eine Versuchsanordnung, mit der sie die Bewegung einer Stahlkugel und einer Luftblase in Glycerin mit und ohne Gravitation untersuchen können. Sie erstellen Videofilme und werten diese aus. Ein ins Wasser gefallener Stein sinkt nach unten, während eine dabei entstehende Luftblase nach oben steigt. Beide Bewegungen werden durch die Gravitationskraft verursacht. Die Auswirkungen, die ein plötzlicher Wegfall der Gravitationskraft auf die Sink- und Steigbewegung von Objekten in Flüssigkeiten hat, können Schülerinnen und Schüler mit einem Fallkapselsystem untersuchen. Als Beispiel wird die Bewegung einer Stahlkugel und einer Luftblase in Glycerin betrachtet. Mikrogravitations-Experimente können in der Schule mit einem System durchgeführt werden, dessen Aufbau in dem Beitrag Mikrogravitation - Experimente im freien Fall ausführlich beschrieben wird. Schülerinnen und Schüler verbinden mit dem Begriff Schwerelosigkeit häufig bewegungsloses Schweben im Raum. Dies lässt sich mit dem Fallkapselsystem schwer realisieren, weil frei bewegliche Objekte beim Startvorgang nahezu unvermeidlich einen Impuls erhalten und sich somit im Raum gleichförmig bewegen. Ein bewegungsloser Schwebezustand lässt sich jedoch leicht herstellen, wenn man den Körper in eine Flüssigkeit einbettet, denn dadurch wird der Anfangsimpuls des Objekts durch Reibung schnell abgebaut. Aufbau, Ergebnisse und Deutung des Versuchs Videobilder dokumentieren die Veränderungen des Verhaltens von Stahlkugel und Luftblase bei Eintritt der Mikrogravitation. Neben der Deutung der Effekte finden Sie hier weiterführende Fragen, die die Lernenden zu eigenständigem Experimentieren anregen. Die Schülerinnen und Schüler sollen ein Experimentiermodul für eine Fallkapsel konstruieren können, mit dem sie die Sinkbewegung einer Stahlkugel und die Steigbewegung einer Luftblase in Glycerin beobachten können. die Bewegung von Luftblase und Stahlkugel vor und nach dem Start der Fallkapsel mit einer Digitalkamera filmen können und aus den Videofilmen mit einem Computerprogramm Videobilder extrahieren können. die Bewegung von Stahlkugel und Luftblase in Glycerin bei normaler Gravitation mit den Kräften der Gravitation, des Auftriebs und der Reibung erklären können. erklären können, warum Stahlkugel und Luftblase bei Mikrogravitation bis zum Stillstand abgebremst werden. Thema Bewegung einer Stahlkugel und einer Luftblase in Glycerin bei normaler Gravitation und bei Mikrogravitation Autor Dr. Volker Martini Fach Physik Zielgruppe Jahrgangsstufen 9-11 Zeitraum 2 Doppelstunden oder freie Zeiteinteilung außerhalb des Unterrichts Technische Voraussetzungen Mikrogravitation - Experimente im freien Fall mit Digitalkamera; Computerprogramm zum Extrahieren von Videobildern aus einem Videofilm (MAGIX Video deluxe 15 oder vergleichbare Software) Der Versuchsaufbau ist in Abb. 1 dargestellt: Stahlkugel (1), Drahtsperre (2), Glycerin (3), Luftblase (4), Luftkammer (5), Zuflussrohr (6). Das quaderförmige Gefäß aus durchsichtigem Plastik ist mit Glycerin gefüllt. Am Boden befindet sich eine Luftkammer mit zwei röhrenförmigen Öffnungen, von denen eine seitlich und die andere oben angebracht ist. Durch die seitliche Öffnung fließt Glycerin in die Kammer, welches die darin befindliche Luft durch die obere Öffnung drückt. Dort entstehen Luftblasen, die im Glycerin aufsteigen. Die Anzahl der pro Sekunde gebildeten Luftblasen hängt davon ab, wie schnell das Glycerin in die Kammer fließt. Dies lässt sich durch Röhrchen mit verschiedenen Querschnitten regulieren. In den oberen Teil des mit Glycerin gefüllten Gefäßes ragt eine Röhre, durch welche die Stahlkugel fallen kann. Die Röhre ist vor dem Start des Experiments durch einen lose angebrachten Sperrdraht verschlossen. In der Startposition des Fallkapselsystems lässt man Luftblasen im Glycerin aufsteigen und startet die Videokamera. Dann entfernt man den Sperrdraht und die Stahlkugel fällt in das Glycerin. Man wartet noch einen kurzen Moment, bis die Stahlkugel etwa die halbe Strecke im Glycerin zurückgelegt hat und lässt dann das Fallkapselsystem frei fallen. Sinkende Stahlkugel und aufsteigende Luftblase Abb. 2 zeigt Videobilder von Luftblase und Stahlkugel kurz vor und nach dem Start des Fallkapselsystems. Links ist ein Maßstab zu sehen. Auf dem ersten Bild, das 0,6 Sekunden vor dem Start aufgenommen wurde, befinden sich Luftblase und Stahlkugel seitlich gegeneinander versetzt ungefähr in der Bildmitte. Auf den drei folgenden Videobildern, die in einem zeitlichen Abstand von je 0,2 Sekunden aufgenommen wurden, ist zu erkennen, dass die Stahlkugel mit konstanter Geschwindigkeit sinkt. Auch die aufsteigende Luftblase bewegt sich mit konstanter Geschwindigkeit. Das vierte Bild wurde zum Zeitpunkt des Starts aufgenommen. Vergleicht man dieses Bild mit den beiden folgenden, so sieht man, dass Stahlkugel und Luftblase gleich zu Beginn der einsetzenden Mikrogravitation abrupt gestoppt werden und sich nicht mehr bewegen. Entstehende Luftblase Am unteren Rand der Videobilder sieht man die Austrittsöffnung der Luftkammer mit einer sich neu bildenden Luftblase. Anfangs vergrößert sich die Luftblase gleichmäßig von Bild zu Bild. Nach dem Start des Fallkapselsystems wächst sie schnell an und wird größer als die zuvor aufgestiegenen Luftblasen. Verhalten der Stahlkugel bei normaler Gravitation Nach dem Eintauchen der Stahlkugel in das Glycerin erfährt sie neben der Gravitationskraft eine Auftriebskraft, die ebenfalls auf die Gravitation zurückzuführen ist. Beide entgegengesetzt gerichteten Kräfte wirken in ihrer Summe nach unten. Hinzu kommt eine nach oben gerichtete Reibungskraft, die im Gegensatz zu den beiden erstgenannten Kräften geschwindigkeitsabhängig ist. Kurz nach dem Eintauchen der Stahlkugel in das Glycerin stellt sich ein Gleichgewicht der Kräfte ein, bei dem die im Experiment beobachtete gleichbleibende Geschwindigkeit erreicht wird. Verhalten der Luftblase in Glycerin bei normaler Gravitation Auch für die aufsteigende Luftblase besteht ein Gleichgewicht zwischen der nach oben wirkenden Auftriebskraft und der diesem Fall nach unten wirkenden Reibungskraft. Die auf die eingeschlossene Luft wirkende Gravitationskraft kann man vernachlässigen. Dies hat zur Folge, dass sich die Luftblase ebenfalls mit konstanter Geschwindigkeit bewegt. Stahlkugel und Luftblase in Glycerin bei Mikrogravitation Nach dem Start des Fallkapselsystems entfallen die Gravitationskraft und die durch sie bedingte Auftriebskraft. Die einzig verbleibende Reibungskraft bremst Stahlkugel und Luftblase schnell ab. Entstehende Luftblase bei Mikrogravitation Die Luftblase, die sich an der Austrittsöffnung der Luftkammer bildet, wächst zunächst gleichmäßig an, weil infolge des hydrostatischen Drucks Glycerin durch die seitliche Öffnung in die Kammer gepresst wird. Die unter erhöhtem Druck stehende Luft tritt durch die obere Öffnung aus, weil hier der hydrostatische Druck wegen der höheren Lage etwas geringer ist als in der seitlichen Öffnung. Nach dem Start des Fallkapselsystems verschwindet mit dem Wegfall der Gravitation auch der hydrostatische Druck im Glycerin. Die in der Luftkammer nach wie vor unter Druck stehende Luft bläht die Luftblase weiter gegen einen geringeren Widerstand auf, der jetzt im Wesentlichen von der Oberflächenspannung des Glycerins herrührt. Wegen der fehlenden Auftriebskraft bewegt sie sich nicht mehr nach oben. Die folgenden Fragen geben den Schülerinnen und Schülern Anregungen für vertiefende Untersuchungen. Von besonderer Bedeutung sind Fragen, die durch eigenständiges Experimentieren beantwortet werden können: Mit welcher Geschwindigkeit sinkt die Stahlkugel? Wie groß ist die Viskosität des verwendeten Glycerins, wenn man das Reibungsgesetz von Stokes zugrunde legt? Welche Temperatur hat das Glycerin? Gilt das Reibungsgesetz von Stokes auch für die Luftblase? Wie ändert sich das Verhalten von Stahlkugel und Luftblase, wenn man das Glycerin mit Wasser verdünnt? Die aufsteigenden Luftblasen verursachen in der Flüssigkeit eine Strömung. Wie lässt sich diese nachweisen? Beeinflusst die Strömung das Sinkverhalten der Stahlkugel? Wie ändert sich die Strömung in der Flüssigkeit beim Übergang zur Mikrogravitation? Verwendet man statt Glycerin Wasser, so sind die Luftblasen kurz nach dem Verlassen der Luftkammer nicht kugelförmig. Welche Formen treten auf und wie ändern sich diese Formen beim Übergang zur Mikrogravitation? Wenn die Luftblasen im Glycerin die Oberfläche erreichen, bilden sich halbkugelförmige Luftblasen, die auf der Oberfläche schwimmen. Was geschieht mit diesen Luftblasen beim Übergang zur Mikrogravitation? Neues entdecken So erfahren Schülerinnen und Schüler beispielhaft die unschätzbare Bedeutung von Experimenten, wenn es darum geht, komplexe Vorgänge besser verstehen zu können. Zudem ist die Chance groß, dass sie bei der Untersuchung der Fragen auch auf ganz neue Effekte stoßen.

  • Astronomie / Physik
  • Sekundarstufe I, Sekundarstufe II

Gewicht und Masse: Was wiegt ein Astronaut auf dem Mond?

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Gewicht und Masse erhalten die Schülerinnen und Schüler ein grundlegendes Verständnis für das Zusammenspiel und die Wechselwirkungen zwischen Gewicht und Masse in Bezug auf die Gravitation. Die Arbeitsblätter behandeln mehrere Themengebiete der Physik: Darunter befinden sich die einzelnen Themen wie Kraft, Druck, mechanische und innere Energie. Die Schülerinnen und Schüler lernen, dass das Gewicht eines Astronauten abhängig von dem Himmelskörper ist, auf dem dieser sich befindet. Zudem erhalten die Schülerinnen und Schüler einen Eindruck vom Astronautentraining, insbesondere wie man auf der Erde für einen Aufenthalt auf dem Mond trainieren kann. Des Weiteren beschäftigten sich die Lernenden mit einer Olympiade auf dem Mond und wie diese unter den dort herrschenden Bedingungen ablaufen würde. Dabei befassen sich die Schülerinnen und Schüler mit den üblichen Sportarten wie Gewichtheben, Laufen, Hochsprung und Weitwurf. Für jede einzelne Sportart werden die Ergebnisse unter der geringeren Anziehungskraft des Mondes berechnet und mit denen auf der Erde verglichen. Die Aufgabenblätter für die beiden Themen "Die erste Mondolympiade: Physik auf dem Mond" und "Gewicht und Masse: Was wiegt ein Astronaut auf dem Mond" gibt es jeweils für die Klassenstufen 7-9 sowie 9-10. Gewicht und Masse: Was wiegt ein Astronaut auf dem Mond? Mithilfe der Formel für die Gravitation lässt sich das Gewicht eines Menschen oder von Gegenständen auf der Erde und auf den Mond berechnen. Da die Gravitation auf dem Mond nur 1/6 so groß ist wie auf der Erde, wiegen dort alle Objekte weniger. Vorkenntnisse Die Schülerinnen und Schüler sollten über die Grundlagen der Mechanik verfügen. Sie sollten wissen, was ein Impuls ist und den grundlegenden Zusammenhang zwischen Masse und Gewicht kennen. Didaktische Analyse Für die Lernenden ist ein hohes Maß an Abstraktionsvermögen nötig. Deshalb müssen Lehrkräfte sehr darauf achten, durch Abbildungen und Animationen den Sachverhalt anschaulich zu gestalten. Nach verständlicher Einführung durch die Lehrkraft oder durch eigenständiges Erarbeiten der beigefügten Grundlagen/Einführung kann das Arbeitsblatt als Hausaufgabe erarbeitet werden. Methodische Analyse Schritt für Schritt wird in der Einführung die Gleichung für die Gravitation beschrieben. Mit begleitenden Übungsaufgaben einschließlich sehr ausführlicher Lösungen werden die Lernenden mit den notwendigen Berechnungen für die verschiedenen Aufgaben vertraut gemacht. Die Schülerinnen und Schüler lernen den Zusammenhang zwischen Masse und Gewicht zu verstehen. können physikalische Gleichungen interpretieren und auswerten. erfahren die Anforderungen an Astronauten. verstehen Gravitation und ihre Eigenschaften. lernen die physikalischen Größen und Eigenschaften des Mondes kennen.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Gravitation im Erde-Mond-System: von der Erde zum Mond und zurück

Unterrichtseinheit

Mithilfe dieser Unterrichtseinheit zur Erde-Mond-Gravitation erkennen die Schülerinnen und Schüler die Auswirkungen differentieller Gravitation und die Wechselwirkungen im Kräftesystem Erde-Mond. In dieser Unterrichtseinheit befassen sich die Schülerinnen und Schüler mit den folgenden Fragen: Wie beeinflusst der Mond die Erde – und wie die Erde den Mond? Was wäre, wenn sich der Mond viel näher um die Erde drehen würde – oder viel weiter weg? Und wieso trifft der Mondschatten die Erde so selten? Die Unterrichtsmaterialien sind im Rahmen des Projektes "Columbus Eye – Live-Bilder von der ISS im Schulunterricht" entstanden. Das übergeordnete Projektziel besteht in der Erarbeitung eines umfassenden Angebots an digitalen Lernmaterialien für den Einsatz im Schulunterricht. Dieses Angebot umfasst interaktive Lerntools und Arbeitsblätter, die über ein Lernportal zur Verfügung gestellt werden. Das Projekt Columbus Eye wird von der Raumfahrt-Agentur des Deutschen Zentrums für Luft- und Raumfahrt e. V. mit Mitteln des Bundesministeriums für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages unter dem Förderkennzeichen 50 JR 1703 gefördert. Anhand der Unterrichtsmaterialien "Gravitation im Erde-Mond-System" mit dazugehöriger App beschäftigen sich die Schülerinnen und Schüler experimentell mit der Veränderung des Erde-Mond-Abstandes. Mit dem Smartphone nehmen sie die Position des Mondes ein und können aus dem Weltraum heraus experimentieren. So finden sie heraus, was passiert, wenn sie der Erde immer näher kommen – sowohl auf der Erde, als auch auf dem Mond. Mit der Mondschatten-Simulation und dem Video einer Mondfinsternis aus dem All ermitteln sie nicht nur, warum Mond- und Sonnenfinsternisse so selten sind, sondern erhalten auch ein Verständnis für die Größenverhältnisse im Weltraum. Die Unterrichtsmaterialien eigenen sich für den Einsatz im Physik- und Astronomie-Unterricht der Sekundarstufe II. Ausführliche Informationen für Lehrkräfte, inklusive thematischer Hintergrund-Informationen, eines Stundenverlaufsplans und Musterlösungen zu den Arbeitsblättern finden sich bei den Downloads. Die Schüler und Schülerinnen erkennen die Auswirkungen differentieller Gravitation erkennen. erkennen Wechselwirkungen im Kräftesystem Erde-Mond. wählen physikalische Größen begründet aus und verarbeiten sie deduktiv in einer Hypothese führen ein Gedankenexperiment durch.

  • Physik / Astronomie
  • Sekundarstufe II, Berufliche Bildung

Relativitätstheorie: Die Periheldrehung der Merkurellipse

Unterrichtseinheit

Schülerinnen und Schüler lernen die Periheldrehung des innersten und kleinsten Planeten des Sonnensystems als wichtigen historischen Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART) kennen. Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Periheldrehung der Merkurbahn, die Lichtablenkung von Sternenlicht am Sonnenrand und die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zur Periheldrehung der Merkurellipse und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie". Klassische Physik und Relativitätstheorie Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zur Periheldrehung von Ellipsenbahnen, der Formel für die Verschiebung des Perihels sowie einem Informations- und Arbeitsblatt diskutieren und vergleichen die Schülerinnen und Schüler die Vorhersagen der Newtonschen Physik mit denen der Allgemeinen Relativitätstheorie. Lehrpersonen finden im Bereich "Mein LO" detaillierte Lösungen der vorgeschlagenen Aufgaben. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Hintergrundinformationen Die Bahnbewegungen des Merkur weichen von der Vorhersagen der Newtonschen Physik ab. Sie konnten erst mit der Allgemeinen Relativitätstheorie erklärt werden. Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise und Materialien zum Einsatz im Unterricht Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass die Bahnellipse des Planeten Merkur sich im Laufe der Zeit kontinuierlich verschiebt. erkennen, dass ein Teil dieser Verschiebung mithilfe der klassischen Physik nicht erklärbar ist. die Formel für die Verschiebung des Perihels aus der Allgemeinen Relativitätstheorie kennenlernen und für Beispielrechnungen anwenden können. mithilfe der Computersimulation und von Berechnungen (Arbeitsblatt) ein Gefühl für die Abhängigkeit der Periheldrehung von der Masse des Zentralkörpers und den Parametern der Ellipse bekommen. erkennen, dass die Allgemeine Relativitätstheorie nur in Extremsituation eine deutliche Abweichung von der Newtonschen Physik zeigt. erfahren, dass die Erklärung der Periheldrehung durch die Relativitätstheorie historisch ein wichtiger Beweis für die Richtigkeit der neuen Gravitationsphysik war. Thema Allgemeine Relativitätstheorie: Periheldrehung der Merkurellipse Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Edwin F. Taylor, John A. Wheeler Exploring Black Holes. Addison Wesely, Longman, Inc., 2000 Mithilfe des Gravitationsgesetzes von Isaac Newton (1643-1727) lässt sich zeigen, dass die Planeten die Sonne auf Ellipsenbahnen umlaufen. Eigentlich sollte man annehmen, dass diese Ellipsen feste Positionen im Raum einnehmen und sich über Jahrtausende nicht verändern. Aber wir dürfen die Planeten nicht als voneinander isolierte Objekte betrachten. Vielmehr zerren die einzelnen Himmelskörper durch ihre Gravitationskräfte aneinander, sodass sich die Lage ihrer Bahnen mit der Zeit leicht verändert - die Ellipsen beginnen sich so zu drehen, dass der sonnennächste Punkt der Ellipse, das Perihel, sich langsam verschiebt. Diese gravitativen Störungen lassen sich mithilfe der Newtonschen Physik berechnen. Bei der Merkurbahn ergibt sich so zum Beispiel eine Periheldrehung von 532,1 Bogensekunden pro Jahrhundert. Die tatsächliche Drehung der Merkurellipse, also das, was Astronomen beobachten, beträgt jedoch 575,2 Bogensekunden. Dies war bereits im neunzehnten Jahrhundert bekannt, aber die fehlenden 43 Bogensekunden blieben lange Zeit rätselhaft, denn die Gravitationsphysik Newtons konnte keine schlüssige Erklärung dafür liefern. Abb. 1 zeigt - nicht maßstabsgetreu! - die Drehung der Ellipse eines Planeten. Im Perihel (sonnennächster Punkt einer Planetenbahn) ist Merkur etwa 46, im Aphel (sonnenfernster Punkt einer Planetenbahn) fast 70 Millionen Kilometer von der Sonne entfernt. Erst die im Jahr 1915 von Albert Einstein veröffentlichte Allgemeine Relativitätstheorie war in der Lage, die fehlenden 43 Bogensekunden vorherzusagen. Dies war ein erster starker und wichtiger Beweis für die Richtigkeit der neuen Theorie über die Gravitation. Die Newtonsche Physik erweist sich als gut brauchbare Näherung für die Betrachtung kleiner Massen beziehungsweise großer Abstände. Da die Bahn des kleinsten Planeten des Sonnensystems der Sonne von allen Planeten am nächsten kommt, macht sich eine Abweichung von der klassischen Beschreibung der Planetenbahnen bei Merkur am deutlichsten bemerkbar. Informationen zum Planeten Merkur und Hinweise für seine Beobachtung finden Sie bei Lehrer-Online und im Netz: Merkur - Beobachtung des flinken Planeten Nur an wenigen Tagen eines Jahres hat man Gelegenheit, Merkur mit bloßem Auge als auffälliges Objekt zu sehen. Relativistische Physik Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Planeten oder Photonen, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetztes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 2 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zur Periheldrehung gemäß der Allgemeinen Relativitätstheorie. Klassische Physik Per Klick auf den Button "Bahnkurve nach Newton" können die Schülerinnen und Schüler die betrachteten Effekte gemäß der Newtonschen Physik darstellen lassen (Abb. 3, Platzhalter bitte anklicken). So ist ein Vergleich beider Zugänge zur Gravitation möglich. Sinnvolle Anfangsbedingungen sind im Programm voreingestellt, sodass man die Simulationen direkt starten kann. Natürlich lassen sich die Werte beim Start der Simulation auch frei wählen. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Periheldrehung der Merkurbahn Lichtablenkung am Sonnenrand Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differentieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Zusammen mit den vielfältigen Animationen der Webseite "Tempolimit Lichtgeschwindigkeit" von Prof. Dr. Ute Kraus (Physik und ihre Didaktik an der Universität Hildesheim) eröffnen die Simulationen interessante und vielfältige Möglichkeiten, verschiedene Effekte der Allgemeinen Relativitätstheorie einem größeren Publikum sehr anschaulich vorzustellen. Tempolimit Lichtgeschwindigkeit Visualisierung und Veranschaulichung der Relativitätstheorie: Hier finden Sie Artikel, Bilder, Filme und Bastelbögen. Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Periheldrehung, Lichtablenkung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Auch am heimischen Rechner können die Lernenden mithilfe des kostenfreien Programms "experimentieren".

  • Physik / Astronomie
  • Sekundarstufe II

Relativitätstheorie: Lichtablenkung am Sonnenrand

Unterrichtseinheit

In dieser Unterrichtseinheit zur Relativitätstheorie lernen die Schülerinnen und Schüler die Lichtablenkung am Sonnenrand als wichtigen historischen Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART) kennen. Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Lichtablenkung von Sternenlicht am Sonnenrand, die Periheldrehung der Merkurbahn, und die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zur Lichtablenkung von Sternenlicht am Sonnenrand und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie". Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zur Lichtablenkung von Sternenlicht am Sonnenrand und einem Informations- und Arbeitsblatt vergleichen die Schülerinnen und Schüler die klassischen mit den relativistischen Vorhersagen: Um welchen Winkel wird ein Lichtstrahl beim Passieren des Sonnenrandes aufgrund der Gravitation "verbogen"? Historisches zum Thema & Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise zum Einsatz im Unterricht & Arbeitsblatt Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass Licht innerhalb von Gravitationsfeldern abgelenkt wird. mithilfe einer vereinfachten Herleitung diese Ablenkung klassisch berechnen können. erfahren, dass diese klassische Betrachtungsweise nicht der Wirklichkeit entspricht. erkennen, dass erst die Allgemeine Relativitätstheorie den richtigen Wert für die Lichtablenkung am Sonnenrand liefert. mithilfe einer Computersimulation die unterschiedlichen Szenarien spielerisch erfahren und nachstellen können. erkennen, dass die exakte Bestimmung der Lichtablenkung am Sonnenrand ein wichtiger historischer Beweis für die Relativitätstheorie ist. Thema Allgemeine Relativitätstheorie: Lichtablenkung am Sonnenrand Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit 1801: Johann Georg von Soldner berechnet die Lichtablenkung "klassisch" Wenn sich ein Lichtstrahl durch das Gravitationsfeld eines Sterns bewegt, wird seine Bahn gekrümmt. Bemerkenswerterweise stammt diese These bereits aus der Zeit vor der Aufstellung der Allgemeinen Relativitätstheorie. Der Gründer der Münchener Sternwarte, Professor Johann Georg von Soldner (1776-1883), hatte bereits im Jahr 1801 ausgerechnet, dass ein Lichtstrahl, der den Sonnenrand passiert, eine Ablenkung von 0,87 Bogensekunden erfahren müsste (1 Bogensekunde = 1/3.600 Grad). Dem Licht gestand er dabei Teilcheneigenschaften zu. Über die Masse dieser Teilchen brauchte er sich keine Gedanken zu machen, da sie sich im Laufe seiner Herleitung, die auf der Newtonschen Physik basiert, herauskürzte. 1919: Eine Sonnenfinsternis bestätigt Einsteins relativistische Vorhersage Albert Einstein entwickelte dagegen aus den Feldgleichungen seiner Allgemeinen Relativitätstheorie (ART) eine Formel für die Lichtablenkung, die in erster Näherung den doppelten Ablenkwinkel am Sonnenrand ergab, nämlich 1,75 Bogensekunden. Die berühmte Sonnenfinsternis-Expedition von 1919, bei der die Verschiebungen von Sternpositionen in der Nähe des Sonnenrandes bei verdunkelter Sonne bestimmt wurden, konnte schließlich den von Einstein vorhergesagten Wert bestätigen. Diese Beobachtung stellte einen wichtigen Meilenstein zur Etablierung seiner neuen Theorie dar und katapultierte Einstein über Nacht in den Rang eines Superstars der modernen Physik. Wikipedia: Sonnenfinsternis vom 29. Mai 1919 Hier finden Sie Informationen zu der historischen Expedition auf die Vulkaninsel Príncipe vor der westafrikanischen Küste. Klassische Physik Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Planeten oder Photonen, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetztes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zur Lichtablenkung gemäß der Newtonschen Physik. Relativistische Physik Per Klick auf den Button "Bahnkurve nach Einstein" können die Schülerinnen und Schüler die betrachteten Effekte gemäß der Allgemeinen Relativitätstheorie darstellen lassen (Abb. 2, Platzhalter bitte anklicken): Der rechte, stärker abgelenkte Lichtstrahl folgt Einsteins Formel. So ist ein Vergleich beider Zugänge zur Gravitation möglich. Sinnvolle Anfangsbedingungen sind im Programm voreingestellt, sodass man die Simulationen direkt starten kann. Natürlich lassen sich die Werte beim Start der Simulation auch frei wählen. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Lichtablenkung am Sonnenrand Periheldrehung der Merkurbahn Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differentieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Formel Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Unterstützung von Lehrervorträgen und Schülerreferaten Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Partnerarbeit im Computerraum Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Lichtablenkung, Periheldrehung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Die Schülerinnen und Schüler sollen zunächst eine vereinfachte Herleitung der Formel von Soldner durchführen, danach die Formel von Einstein kennen lernen und mithilfe der Computersimulation beide Szenarien "durchspielen". Die Simulation ermöglicht dabei eine direkte Veranschaulichung der Ergebnisse aus den Rechnungen. Auch am heimischen Computer können die Lernenden mithilfe des kostenfreien Programms "experimentieren". Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat.

  • Physik / Astronomie
  • Sekundarstufe II

Das simulierte Gummituch - Raumkrümmung am Computer

Unterrichtseinheit

Die Lernenden werden schrittweise an den Begriff der Raumkrümmung herangeführt. Sie erkennen, dass die Bahnen von Himmelskörpern in Gravitationsfeldern mithilfe des Modells einer gekrümmten Fläche sehr gut dargestellt werden können. Die Effekte der Raumkrümmung (Allgemeine Relativitätstheorie) lassen sich anschaulich mithilfe einer Gummimembrane demonstrieren, in deren Mitte eine schwere Kugel liegt, die die Fläche der Membrane eindellt. Eine kleine Kugel, die über diese Fläche rollt, wird durch die Mulde so beeinflusst, als würde sie von der großen Kugel angezogen werden. Solche Gummihaut-Modelle sind allerdings schwierig zu bauen. Das hier vorgestellte Computerprogramm simuliert eine solche deformierbare Fläche und ermöglicht die Darstellung der Bahnkurven einer kleinen Kugel, die über diese Fläche ?rollt?. Das hier vorgestellte Programm Raumkrümmung.exe ermöglicht die Erkundung von Auswirkungen der Flächenkrümmung auf die Bahn einer rollenden Kugel unter verschiedenen Parametereinstellungen (Tiefe der Mulde, Startposition und -geschwindigkeit der Kugel). Die Schülerinnen und Schüler können so schrittweise an den Begriff der Raumkrümmung herangeführt werden und erfahren, dass die bekannten Bahnen innerhalb von Gravitationsfeldern sehr gut durch die Vorstellung eines gekrümmten Raums (hier einer gekrümmten Fläche) anschaulich verstanden werden können. Das Programm wurde vom Autor mithilfe der Programmiersprache Delphi verfasst. Die Datei ist nach dem Herunterladen direkt ausführbar, muss also nicht installiert werden. Das simulierte Gummituch Das Programm zur Raumkrümmung ist eine sehr gute Alternative zum schwer herzustellenden "echten" Modell. Screenshots zeigen, was die Simulation kann. Einsatz der Simulation im Unterricht Hier finden Sie Beispielwerte für verschiedene Parameter, die in der Simulation unterschiedliche Bahnformen - Kreise, Ellipsen, Rosetten - erzeugen und Erläuterungen. Die Schülerinnen und Schüler sollen erfahren, dass sich die abstrakte Idee eines dreidimensionalen, gekrümmten Raums mithilfe eines Gummimembranen-Modells veranschaulichen lässt. mithilfe der Computersimulation die didaktischen Möglichkeiten eines solchen Modells spielerisch erfassen. mit konkreten Daten die unterschiedlichsten Bahnkurven von Körpern in der Nähe großer Massen mit dem Computer simulieren. erkennen, dass Abweichungen vom klassischen Gravitationspotential zu rosettenförmigen Umlaufbahnen führen. Thema Raumkrümmung, Gravitation, Allgemeine Relativitätstheorie Autor Matthias Borchardt Fächer Physik (Kegelschnittbahnen, Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Verzerrung von Raum und Zeit durch Massen Eine zentrale Aussage der Allgemeinen Relativitätstheorie (Albert Einstein, 1915) ist die Behauptung, dass Gravitation ein Effekt der sogenannten Raumkrümmung ist. Eine große Masse verzerrt in ihrer Umgebung Raum und Zeit derart, dass Körper, die sich an der Zentralmasse vorbeibewegen, abgelenkt oder sogar auf Ellipsen- oder Kreisbahnen gezwungen werden. Reduktion des gekrümmten Raums auf eine zweidimensionale Membrane Die Krümmung des Raums kann man sich anschaulich nicht vorstellen - dazu müsste man sich ein vierdimensionales Koordinatensystem denken, in das der dreidimensionale Raum eingebettet ist. Um dennoch eine gewisse Vorstellung von der Raumkrümmung zu gewinnen, wird häufig das sogenannte Gummituch-Modell verwendet. Eine Masse deformiert eine Gummimembrane derart, dass eine Mulde entsteht. Eine Kugel, die sich zuvor auf einer geraden Linie bewegt hat, wird durch diese Mulde abgelenkt - es scheint eine Kraft (Gravitation) von der Masse auszugehen, die die Mulde verursacht hat. In diesem Modell wird also der gekrümmte Raum auf eine zweidimensionale Membrane reduziert, die in den dreidimensionalen Raum eingebettet ist. Dieses Modell kann viele Effekte der Raumkrümmung hervorragend demonstrieren, wie zum Beispiel die Ablenkung einer Masse von ihrer geraden Bahn oder die Entstehung von kreis- und ellipsenförmigen Umlaufbahnen. Das Modell als Simulation Die Herstellung eines großen, funktionstüchtigen Gummituch-Modells ist allerdings aufwändig und oft nur größeren naturwissenschaftlichen Museen oder Planetarien vorbehalten. Eine sehr gute Alternative bietet das hier vorgestellte Simulationsprogramm Raumkrümmung.exe. Visualisierung der Membran Das Programm stellt das Schrägbild einer Fläche dar, in deren Mitte sich eine Mulde erzeugen lässt. Die Tiefe dieser Deformation ist über den Schieberegler "Tiefe der Mulde" einstellbar (Abb. 1; zur Vergrößerung bitte anklicken). Die Bahnkurve einer rollenden Kugel wird direkt auf dieser Fläche durch eine gelbe Linie abgebildet. Startort und Startgeschwindigkeit der Kugel lassen sich ebenfalls einstellen. Für eine optimale Darstellung kann die Situation aus verschiedenen Blickwinkeln betrachtet werden. Die Fläche lässt sich in beliebige Richtungen drehen (Rotation der Darstellung um die drei Achsen) oder per Klick auf den Button "von oben" in der Aufsicht darstellen (Abb. 2; zur Vergrößerung bitte anklicken). Das Muldenprofil folgt dem Newtonschen Gravitationspotenzial, also einer Hyperbel. Dieses Hyperbelprofil wäre allerdings nach unten offen. Daher wurde es unten durch eine Kugelfläche abgeschlossen, die sich tangential an die Hyperbelfläche anschmiegt (Abb. 3). So ist gewährleistet, dass eine (simulierte) Kugel durch diese Mulde rollen kann, ohne ins Bodenlose zu stürzen. Allerdings kann das zuweilen auch zu überraschenden Bahnformen führen. Ein solcher Fall wird weiter unten dargestellt. Wenn das Programm geöffnet wird, ist das Schrägbild einer Fläche zu sehen, die in ihrer Mitte eingedellt ist. Mit dem Start-Button kann man nun die Kugel starten, die über diese Fläche rollen soll. Zunächst ist der Ort mit x = 160, y = -500 und die Geschwindigkeit mit vx = 0, vy = 2000 für die Startsituation eingestellt. Man sieht deutlich, dass der Weg der Kugel gekrümmt verläuft. Bewegung der Kugel auf einer geraden Linie Sinnvoll ist es nun, die Flächenkrümmung auf Null zu setzen, was durch den Schieberegler "Tiefe der Mulde" (unten rechts) zu bewerkstelligen ist. Sehr schön ist zu erkennen, dass der Weg der Kugel nun eine Gerade ist. Ellipsenförmige Bahn Stellen Sie nun wieder die Mulde her. Um eine geschlossene Bahn (Ellipse) der Kugel zu erzeugen, wählen Sie zum Beispiel: x = 140, y = 0 und vx = 0, vy = 2000. Kreisförmige Bahn Eine fast ideale Kreisbahn ergibt sich zum Beispiel bei x = 120, y = 0 und vx = 0, vy = 1800. Rosettenförmige Bahn Stellen Sie nun ein: x = 200, y = 0 und vx = 0, vy = 1200. Es entsteht wieder eine Ellipsenbahn. Wenn Sie nun die Geschwindigkeit geringfügig ändern, zum Beispiel auf vy = 1100, entsteht überraschenderweise keine Ellipse mehr, sondern eine rosettenförmige, ständig wandernde Bahn um die Mulde herum (Abb. 4). Die Rolle der Kugelfunktion am Boden der Mulde Der "Rosetteneffekt" wird dadurch verursacht, dass bei den gewählten Parametern die Bahn der Kugel die Hyperbelfläche verlässt und ein kurzes Stück über die Kugelfläche unten in der Mulde läuft. Da die Kugelfunktion deutlich von der Hyperbelfunktion und damit vom Newtonschen Gravitationspotenzial V(r) = - G • M/r abweicht, kann keine Kegelschnittbahn, in diesem Fall also keine Ellipse, mehr entstehen. Es ist ja gerade das Besondere, dass allein aus der Hyperbelform des Potenzials die Kegelschnittbahnen folgen - jede Abweichung von der Hyperbel führt zu einer völlig veränderten Bahnkurve. Möchte man den Schülerinnen und Schülern also geschlossene Kegelschnittbahnen demonstrieren, sollte man die Bahnkurve der Kugel nicht zu tief in die Mulde führen, jedenfalls nicht so tief, dass sie die untere Halbkugelfläche berührt. Andererseits kann es auch recht interessant und lehrreich sein, die Auswirkungen der Abweichung von der Hyperbelform zu demonstrieren. Periheldrehung der Merkurbahn Übrigens beruht die Periheldrehung der Merkurbahn, also die langsame Verschiebung der Ellipse, auf einer Abweichung von der Hyperbelform des Potenzials. In der Nähe großer Massen folgt das Potenzial nämlich nicht mehr der klassischen Physik, sondern muss durch die Allgemeine Relativitätstheorie beschrieben werden. Vielfältige Einsatzmöglichkeiten Durch eine geschickte Wahl der Parameter ermöglicht das Programm Raumkrümmung.exe die Erzeugung der unterschiedlichsten Bahnen. Es bietet sich daher auch für ein spielerisches Erfassen der verschiedenen Situation durch die Schülerinnen und Schüler an. Zudem ist auch sehr gut geeignet, um zum Beispiel mithilfe eines Arbeitsblatts konkrete Situationen ausprobieren zu lassen. Die Schülerinnen und Schüler könnten so schrittweise an den Begriff der Raumkrümmung herangeführt werden und erfahren, dass die bekannten Bahnen innerhalb von Gravitationsfeldern sehr gut durch die Vorstellung eines gekrümmten Raums (hier einer gekrümmten Fläche) verstanden werden können. Auch am heimischen Rechner können die Lernenden mithilfe des kostenfreien Programms mit der Raumkrümmung "experimentieren". Anmerkung zu den Begriffen Raumkrümmung und Raumzeitkrümmung Im Sinne der Allgemeinen Relativitätstheorie sollte man bei der Beschreibung von Bahnkurven bewegter Körper eigentlich nicht den Begriff Raumkrümmung verwenden, sondern stattdessen von der Raumzeitkrümmung sprechen. Die Darstellung der Situation als gekrümmte Fläche (Gummituch) beinhaltet nämlich zwei starke Vereinfachungen: zum einen die Reduktion des dreidimensionalen Raumes auf zwei Dimensionen und zum anderen die Vernachlässigung der Zeitkomponente. Diese Vereinfachungen machen aber - gerade für jüngere Schülerinnen und Schüler- die Ideen der Relativitätstheorie begreifbar. In höheren Klassen sollte man jedoch auf diese didaktischen Reduzierungen hinweisen. Gedankenexperimente zu verschiedendimensionalen Räumen finden Sie auch in der Unterrichtseinheit Eine Reise ins "Flächenland" mit GEONExT . In dem darin verwendeten Humoreske "Flächenland" von Edwin Abbott (1838-1926) werden unter anderem die Probleme eines alten Quadrats beschrieben, das das zweidimensionale Flächenland bewohnt und das von einer Kugel Besuch aus der dritten Dimension bekommt. Ausgewählte Aspekte des Romans werden mithilfe der dynamischen Mathematiksoftware GEONExT visualisiert.

  • Physik / Astronomie
  • Sekundarstufe II

Allgemeine Relativitätstheorie: die Sonnenfinsternis-Expedition

Unterrichtseinheit

Diese Unterrichtseinheit zur Allgemeinen Relativitätstheorie thematisiert die Sonnenfinsternis-Expedition im Jahre 1919, welche die Lichtablenkung von Sternenlicht am Rand der Sonne vermessen konnte. Damit gelang eine erste experimentelle Bestätigung der Allgemeinen Relativitätstheorie, was Albert Einstein zu großer Popularität verhalf. Fast 100 Jahre später steht die Relativitätstheorie erneut im Fokus öffentlichen Interesses, denn mit dem direkten Nachweis von Gravitationswellen konnte eine weitere, wichtige Vorhersage der Theorie betätigt werden. Die Schülerinnen und Schüler recherchieren Hintergrund, Durchführung und Ergebnisse der Sonnenfinsternis-Expedition. Sie berechnen die extrem kleinen Verschiebungen der Sternpositionen auf der Fotoplatte unter Verwendung der Fernrohr-Brennweise und vergleichen die Messergebnisse mit den Vorhersagen der klassischen und der relativistischen Physik. Sie äußern sich zu der Aussagekraft der Messergebnisse. Die Materialien nehmen Bezug auf ein Erklärvideo aus der Mediathek der Lindauer Nobelpreisträgertagungen. Zu diesem Video finden Sie bei Lehrer-Online noch zwei weitere Unterrichtseinheiten, welche die erste indirekte Bestätigung von Gravitationswellen mithilfe eines Pulsars (1974) sowie den ersten direkten Nachweis von Gravitationswellen mithilfe von Laser-Interferometern (2015) zum Inhalt haben und ergänzend zur vorliegenden Einheit im Unterricht eingesetzt werden können. Didaktische Analyse Die im Jahr 1919 durchgeführten Sonnenfinsternis-Expeditionen nach Principe (Westafrika) und Sobral (Brasilien) hatten den Charakter eines "Experimentum Crucis" – eines Entscheidungsexperiments. Auch die klassische Physik nach Newton sagt eine Ablenkung eines Lichtstrahls voraus, wenn dieser dicht an einer großen Masse, wie zum Beispiel die der Sonne, vorbeigeht. Einstein konnte aber aus seiner Allgemeinen Relativitätstheorie 1915 ausrechnen, dass die Lichtablenkung (in erster Näherung) doppelt so groß sein müsste, wie sie sich aus der klassischen Physik ergibt. Die experimentelle Bestimmung des Ablenkwinkels sollte also entscheiden, ob die Relativitätstheorie die allgemeingültige Beschreibung von Gravitation darstellt. Vom Standpunkt der Physikdidaktik stellt die damalige Situation ein Paradebeispiel dar, wie wissenschaftliche Erkenntnisse gewonnen und abgesichert werden. Die Materialien zu dieser Unterrichtseinheit sollen dies widerspiegeln. Die Idee, die Lichtablenkung mithilfe der Verschiebung der Sternpositionen bei einer Sonnenfinsternis nachzuweisen, ist bestechend einfach – die Durchführung allerdings aufgrund der extrem kleinen Effekte äußerst schwierig. Auch diese Problematik wird in den Arbeitsblättern thematisiert, indem die Lernenden berechnen, wie groß die Verschiebungen der Sternpositionen auf den Fotoplatten nach Einstein tatsächlich sein sollten. Nur so lässt sich ermessen, wie schwierig die Auswertung und Interpretation der Messungen seinerzeit waren. Methodische Analyse Ein Erklär-Plakat, das 1919 in einer populären Zeitschrift (Illustrated London News) die physikalischen Hintergründe und Zusammenhänge der Sonnenfinsternis-Expedition darstellte, dient den Schülerinnen und Schülern als Anlass, Informationen über die damalige Forschungsreise zu sammeln und zusammenzustellen. Aus heutiger Sicht ist es erstaunlich, wie gut man damals bereits in der Lage war, Wissenschaft journalistisch aufzuarbeiten und den Bürgerinnen und Bürgern näher zu bringen. Im Weiteren rechnen die Lernenden den Ablenkwinkel am Sonnenrand konkret aus und werten die Positionen von sieben Sternen, die auf den Fotoplatten sichtbar wurden, graphisch aus, um dann eine Entscheidung für oder wider die Hypothese von Einstein treffen zu können. Vorkenntnisse Die Lernenden sollten das Gravitationsgesetz von Newton kennen. Die Formel für die Lichtablenkung ist nicht schwierig und wird fertig angegeben. Allerdings stellt der Umgang mit den unterschiedlichen Begriffen bei der Berechnung von Winkeln (Bogensekunden, Grad, Radiant, Bogenmaß) die Schülerinnen und Schüler erfahrungsgemäß vor Probleme. Daher werden verhältnismäßig große Vorgaben diesbezüglich in den Materialien gemacht. Vermutlich ist aber auch Lehrerhilfe an der einen oder anderen Stelle sinnvoll und notwendig. Fachkompetenz Die Schülerinnen und Schüler erkennen, dass die Allgemeine Relativitätstheorie von der klassischen Physik abweicht, sobald die gravitativ wirkenden Massen groß oder die Abstände zu diesen klein werden. berechnen physikalische Größen. werten Messwerte aus. interpretieren und bewerten Versuchsergebnisse. erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang. stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus. Medienkompetenz Die Schülerinnen und Schüler können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben sowie Informationen gezielt herausstellen. können Texte in gedruckter und digitaler Form nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. diskutieren in Partner- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. stellen Ergebnisse der Partner- und Gruppenarbeit angemessen und verständlich im Plenum dar.

  • Physik / Astronomie
  • Sekundarstufe II

Mikrogravitation – das Herz einer Kerzenflamme

Unterrichtseinheit

Schülerinnen und Schüler untersuchen mit einem Fallkapselsystem die Veränderungen einer Kerzenflamme, wenn Gravitation in Mikrogravitation übergeht. Sie erstellen Videofilme und werten diese aus.Zu den ersten wissenschaftlichen Experimenten, die unter Mikrogravitationsbedingungen in einer Raumstation durchgeführt wurden, gehörte die Untersuchung einer Kerzenflamme. Ähnliche Experimente können in der Schule auch mit einem Fallkapselsystem durchgeführt werden, dessen Aufbau in dem Beitrag Mikrogravitation - Experimente im freien Fall ausführlich beschrieben wird. Der hier vorgestellte Versuch führt zu überraschenden Ergebnissen bezüglich der Bildung von Rußpartikeln unter den Bedingungen der Mikrogravitation.Wenn Schülerinnen und Schüler im Internet nach Phänomenen der Mikrogravitation suchen, werden sie auf faszinierende Bilder von Kerzenflammen stoßen, die kugelförmig und blau leuchten. Sie können die Entstehung des Phänomens gut verstehen, wenn sie eigene Experimente mit einem Fallkapselsystem durchführen. Zuvor müssen sie die Vorgänge in einer unter normalen Gravitationsbedingungen brennenden Kerze kennen lernen. Bei den Fallexperimenten werden sie im Flammenbereich interessante Strukturen entdecken, die nicht in Lehrbüchern zu finden sind. Sie können die Bildung von Ruß bei Mikrogravitation beobachten. Grundlagen, Ergebnisse und Deutung des Versuchs Videobilder dokumentieren die Veränderungen der Flamme bei Eintritt der Mikrogravitation. Neben der Deutung der Effekte finden Sie hier weiterführende Fragen, die die Lernenden zu eigenständigem Experimentieren anregen. Die Schülerinnen und Schüler sollen die Kerzenflamme vor und nach dem Start der Fallkapsel mit einer Digitalkamera filmen und aus den Videofilmen mit einem Computerprogramm Videobilder extrahieren können. die Struktur einer unter normalen Gravitationsbedingungen leuchtenden Kerzenflamme beschreiben und die Vorgänge in den charakteristischen Flammenzonen darstellen können. die Veränderung der Gestalt der Kerzenflamme beim Übergang zur Mikrogravitation beschreiben und erklären können. die Ursache für die vermehrte Bildung von Rußpartikeln beim Übergang zur Mikrogravitation nennen können. Thema Das Herz einer Kerzenflamme bei Mikrogravitation Autor Dr. Volker Martini Fach Physik Zielgruppe Jahrgangsstufen 9-11 Zeitraum 2 Doppelstunden oder freie Zeiteinteilung außerhalb des Unterrichts Technische Voraussetzungen Mikrogravitation - Experimente im freien Fall mit Digitalkamera; Computerprogramm zum Extrahieren von Videobildern aus einem Videofilm (MAGIX Video deluxe 15 oder vergleichbare Software) Für die Experimente bei Mikrogravitation ist die dunkle Zone, also das "kalte Herz" der Flamme, von besonderem Interesse. Eine Flamme lässt sich grob in drei Zonen gliedern: Eine blau leuchtende Zone (1), eine dunkle Zone (2) und eine weißlich-gelb leuchtende Zone (3). Die blau leuchtende Zone umgibt kelchförmig den unteren Teil der Flamme. Hier wird ein Teil des Paraffins vollständig zu Wasser und Kohlenstoffdioxid verbrannt. Die dunkle Zone ist gefüllt mit verdampftem Paraffin. Im oberen Teil dieser Zone beginnt infolge des Sauerstoffmangels die Pyrolyse des Paraffins, bei der Kohlenstoffpartikel entstehen. In der weißlich-gelb leuchtenden Zone schreitet die Pyrolyse weiter fort. Die entstehenden Kohlenstoffpartikel glühen und strahlen Licht und Wärme ab. An der Grenze zur umgebenden sauerstoffreichen Luft verbrennen die Kohlenstoffpartikel größtenteils zu Kohlenstoffdioxid. Abb. 2 zeigt das Videobild einer Kerzenflamme, das 0,167 Sekunden nach dem Start des Fallkapselsystems aufgenommen wurde. Man sieht eine kugelförmige Kerzenflamme mit einer kleinen "Krone" aus hell leuchtenden Partikeln, die aus der Flammenkugel herausragt. Dabei handelt es sich um glühende Rußpartikel, die im Zentrum der Kerzenflamme, ihrem "kalten Herz", gebildet wurden. Die Veränderungen der Kerzenflamme sind in Abb. 3 zu sehen. Die Bildserien wurden vor dunklem und vor hellem Hintergrund aufgenommen. Normale Gravitationsbedingungen Vor dem Start hat die Kerzenflamme die vertraute nach oben weisende kegelförmige Gestalt. Die heißen Gase in ihr sind leichter als die umgebende Luft und streben, angetrieben durch die Auftriebskraft, nach oben. Die dabei entstehende Konvektionsströmung versorgt die Flamme mit Sauerstoff aus der umgebenden Luft. Verkürzung der Flamme und Rußbildung Nach dem Start der Fallkapsel wird die Kerzenflamme kugelförmig und dunkler. Mit der Gravitationskraft verschwindet auch die durch sie verursachte Auftriebskraft. Die heißen Gase streben nicht mehr nach oben und die Flamme wird nicht mehr so gut mit Sauerstoff versorgt. Wegen der wegfallenden Konvektion muss der für die Verbrennung notwendige Sauerstoff durch die viel langsamere Diffusion bereitgestellt werden. Die Temperatur der Kerzenflamme sinkt und fällt unter den für die vollständige Verbrennung von Kohlenstoff notwendigen Mindestwert von 1.000 Grad Celsius. Es bilden sich Partikel aus nicht verbranntem Kohlenstoff. Die Kerzenflamme bildet vermehrt Ruß. Zeitverlauf In den Videobildern von Abb. 3 lässt sich gut verfolgen, wie sich nach dem Start des Fallkapselsystems in der Kerzenflamme relativ große Rußpartikel bilden. Bereits nach 0,1 Sekunden hat sich die helle Flammenzone zurückgebildet. Übrig bleibt die kugelförmige dunkle Zone mit einer aufgesetzten zylindrischen Struktur. Einzelne Partikel lassen sich noch nicht identifizieren. Nach 0,2 Sekunden erscheinen vor dunklem Hintergrund im oberen zylindrischen Teil der Flamme, der sich zum Docht hin kegelförmig erweitert, hell leuchtende, glühende Kohlenstoffpartikel. Ihr Durchmesser liegt in einer Größenordnung von 100 Mikrometern. Vor hellem Hintergrund sind diese Partikel nicht zu sehen. Hingegen erscheinen dort auf dem Mantel der inneren kegelförmigen Struktur dunkle Schleier, die auf kältere Kohlenstoffpartikel hindeuten. Nach 0,3 Sekunden ist die Anzahl leuchtender Partikel deutlich zurückgegangen. Es erscheinen vermehrt größere und dunkle Partikel, die vor hellem Hintergrund besonders gut zu sehen sind. Die Flamme rußt. Die Produktion der Rußpartikel konzentriert sich auf wenige Bereiche der Flamme. Auffallend ist eine in der Mitte der Flamme vom Docht ausgehende schmale Spur besonders großer Partikel. Die folgenden Fragen geben den Schülerinnen und Schülern Anregungen für vertiefende Untersuchungen. Von besonderer Bedeutung sind Fragen, die durch eigenständiges Experimentieren beantwortet werden können: Wie viele dunkle Rußpartikel, die größer als 50 Mikrometer sind, werden beim Fallexperiment gebildet? Welchen Durchmesser hat das größte Rußpartikel? Mit welcher Geschwindigkeit bewegen sich die Rußpartikel nach oben? Welches Bild liefert die Kerzenflamme im Fallversuch, wenn man die Kerze so dreht, dass der Docht nach hinten oder nach vorne weist? In dem Versuch wird eine Kerze aus Paraffin verwendet. Gibt es Unterschiede, wenn man stattdessen Kerzen aus Stearin oder Bienenwachs einsetzt? Neues entdecken So erfahren Schülerinnen und Schüler beispielhaft die unschätzbare Bedeutung von Experimenten, wenn es darum geht, komplexe Vorgänge besser verstehen zu können. Zudem ist die Chance groß, dass sie bei der Untersuchung der Fragen auch auf ganz neue Effekte stoßen.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Mechanik

Unterrichtseinheit

In dieser Materialsammlung finden Sie Unterrichtsmaterialien rund um Energie und Impuls, die Newtonschen Gesetze, geradlinige Bewegungen, Wurf- und Kreisbewegungen, Gravitation sowie zu mechanischen Wellen und Schwingungen.Die von Isaac Newton bereits im 17. Jahrhundert abgeleitete klassische Mechanik mit ihren Teilgebieten " Kinematik " und "Dynamik" wird an allen Schularten unterrichtet und ist als Spezialfall sowohl in der Relativitätstheorie als auch in der Quantenmechanik enthalten. Die Kinematik beschreibt geradlinige Bewegungen mit konstanter Geschwindigkeit und Bewegungen unter dem Einfluss von Beschleunigungen, ohne dabei Masse und Kräfte zu berücksichtigen; werden die Wirkungen von Masse und Kräften auf Bewegungen miteinbezogen, spricht man von Dynamik . Dabei wird das Kräftegleichgewicht bei ruhenden Körpern als Statik bezeichnet, während die Kinetik Krafteinwirkungen behandelt, die den Bewegungszustand verändern. Kräfte wie etwa Gewichtskräfte, Reibungskräfte, Antriebskräfte oder Bremskräfte spielen eine große Rolle. So wäre beispielsweise Fliegen mit einem Airbus A-380 (Startmasse 560 Tonnen) unmöglich, wenn nicht immense Antriebskräfte durch die Triebwerke an den Flügeln eine Auftriebskraft erzeugen würden, die sowohl das Abheben als auch einen Flug zu einem anderen Kontinent ermöglichen. Kräfte beeinflussen Bewegungen wie horizontale, schräge und senkrechte Würfe. Bei Kreisbewegungen entsteht gleichzeitig mit der sie erzeugenden Zentripetalkraft auch eine als Zentrifugalkraft wirkende Scheinkraft, die man etwa aus schnellen Kurvenfahrten mit dem Auto kennt. Aus Kräften folgen wichtige mechanische Größen wie Arbeit, potentielle und kinetische Energie sowie der Impuls mit den zugehörigen Energie- und Impulserhaltungssätzen , die eine Umwandlung verschiedener Größen ermöglichen. Mithilfe der Gesetze zur Gravitation lassen sich die Bewegungsabläufe in der Raumfahrt bis hin zu den Vorgängen bei Planetenumläufen um die Sonne oder anderen Abläufen im Weltall beschreiben. Schwingungen, die nach dem Zusammendrücken oder Dehnen einer Feder entstehen, lassen sich in ähnlicher Form beschreiben wie die Bewegungsabläufe nach Auslenkung eines Pendels – sie werden als mechanische Schwingungen mit den Spezialformen harmonische Schwingungen sowie freie, gedämpfte und erzwungene Schwingungen beschrieben. Wirft man hingegen einen Stein in ein ruhendes Gewässer, so kann man die Ausbreitung einer kreisförmigen Störung beobachten, was in der Physik als mechanische Welle bezeichnet wird.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Relativitätstheorie: Der Shapiro-Effekt

Unterrichtseinheit

Einmal Venus und zurück – Schülerinnen und Schüler untersuchen mithilfe einer Simulation die Laufzeitverzögerung von Radarechos. Der Effekt beruht auf der Krümmung des Raums durch die Masse der Sonne. Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche, die Lichtablenkung von Sternenlicht am Sonnenrand und die Periheldrehung der Merkurbahn. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zum Shapiro-Effekt und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie". Der amerikanische Physiker Irwin Shapiro schickte im Jahr 1970 Radarimpulse zur Venus, die an der Oberfläche des Planeten reflektiert und auf der Erde wieder aufgefangen wurden. Aufgrund der Raumkrümmung sollten die Impulse etwas länger unterwegs sein, als es die Newtonsche Gravitationsphysik vorhersagt. Die von Shapiro festgestellte Laufzeitverzögerung der Signale war eine wichtige Bestätigung der Allgemeinen Relativitätstheorie. Grundlage dieser Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zum Shapiro-Effekt und einem Informations- und Arbeitsblatt vergleichen die Schülerinnen und Schüler die klassischen mit den relativistischen Vorhersagen. Historisches zum Thema Um die obere Konjunktion der Venus herum macht sich die Laufzeitverzögerung ihrer Radarechos durch die Raumzeitkrümmung am stärksten bemerkbar. Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise zum Einsatz im Unterricht & Arbeitsblatt Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass die Allgemeine Relativitätstheorie mit der Idee der Raumzeitkrümmung einen längeren Weg eines Radarimpulses zur Venus vorhersagt. an einem einfachen Beispiel diese Laufzeitverzögerung berechnen können. mithilfe eines Computerprogramms das Langzeit-Experiment des Physikers Irwin Shapiro aus dem Jahr 1970 simulieren, auswerten und die Ergebnisse miteinander vergleichen. erkennen, dass die Messungen Shapiros ein wichtiger Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie sind. Thema Allgemeine Relativitätstheorie: Der Shapiro-Effekt Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Einmal Venus und zurück - Laufzeitverzögerung von Radarwellen Im Jahr 1970 konnte der amerikanische Physiker Irwin Shapiro die Raumkrümmung in der Nähe der Sonne experimentell nachweisen. Er lieferte damit einen weiteren Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART). Seine Idee war, die Entfernung Erde-Venus mithilfe von Radarstrahlung exakt zu bestimmen. Dabei sollten sich Venus und Erde so gegenüberstehen, dass die Radarimpulse den Sonnenrand in geringem Abstand passieren mussten, denn in der Nähe der Sonne wirkt sich der Effekt der Raumkrümmung durch die Sonnenmasse besonders stark aus (Abb. 1). Ausgestrahlt wurden die Radarimpulse von einer riesigen Antenne auf der Erde. An der Venusoberfläche wurden sie reflektiert und auf der Erde wieder aufgefangen. Mithilfe der Laufzeit der Impulse und der Geschwindigkeit der Radarwellen (Lichtgeschwindigkeit) konnte der von den Wellen zurückgelegte Weg sehr genau berechnet werden. Der krumme Weg ist um 80 Mikrosekunden länger Shapiro führte im Laufe einiger Monate eine Vielzahl von Messungen durch. Als Beispiel betrachten wir hier die Daten, die er am 16. März 1970 ermitteln konnte. Die Positionen von Erde und Venus an diesem Tag sind in Abb. 2 dargestellt. Da die Planetenpositionen genau berechnet werden können, wusste man, dass der Abstand von Erde und Venus zu diesem Zeitpunkt 249 Millionen Kilometer betrug. Die Lichtgeschwindigkeit (Geschwindigkeit der Radarwellen) beträgt 300.000 Kilometer in einer Sekunde. Die Messung von Shapiro ergab jedoch nicht den erwarteten Wert von 1.660 Sekunden (27 Minuten und 40 Sekunden), sondern einen etwas größeren Wert, nämlich 1.660,000080 Sekunden. Die Laufzeit hatte sich also um 80 Mikrosekunden (80 millionstel Sekunden) vergrößert. Das ist nicht viel, war aber von großer Bedeutung, denn die Allgemeine Relativitätstheorie hatte genau diesen Wert vorhergesagt. Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Objekten, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetzes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 3 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zum Shapiro-Effekt. Zunächst wurde die "Bahnkurve nach Newton" simuliert. Danach wurde - ohne die Erde-Venus-Konstellation zu ändern - die Laufzeit der Signale nach Einstein simuliert. Beide Laufzeiten sowie die ermittelte Differenz werden in dem Feld "Daten für Radarecho-Experimente" angezeigt (oben rechts in Abb. 3). Die Konstellationen können im Zeitraum von 200 Tagen vor beziehungsweise nach der oberen Konjunktion gewählt werden. (Zum Zeitpunkt der oberen Konjunktion befindet sich die Sonne zwischen Erde und Venus.) Je näher die Radarwellenechos an der Sonne vorbei müssen, um zur Erde zurückzukehren, desto größer die Laufzeitverzögerung. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Lichtablenkung am Sonnenrand Periheldrehung der Merkurbahn Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differenzieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Unterstützung von Lehrervorträgen und Schülerreferaten Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Partnerarbeit im Computerraum Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Lichtablenkung, Periheldrehung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Die Simulation liefert konkrete Werte, die im Arbeitsblatt ausgewertet werden können und veranschaulicht das Experiment von Shapiro auf dem Computermonitor. Auch am heimischen Computer können die Lernenden mithilfe des kostenfreien Programms "experimentieren". Anmerkung zu den Begriffen Raumkrümmung und Raumzeitkrümmung Im Sinne der Allgemeinen Relativitätstheorie sollte man bei der Beschreibung von Bahnkurven bewegter Körper und Photonen eigentlich nicht den Begriff Raumkrümmung verwenden, sondern stattdessen von der Raumzeitkrümmung sprechen. Die Darstellung der Situation als gekrümmte Fläche (siehe Abb. 1) beinhaltet nämlich zwei starke Vereinfachungen: zum einen die Reduktion des dreidimensionalen Raumes auf zwei Dimensionen und zum anderen die Vernachlässigung der Zeitkomponente. Diese Vereinfachungen machen aber - gerade für jüngere Schülerinnen und Schüler- die Ideen der Relativitätstheorie begreifbar. In höheren Klassen sollte man jedoch auf diese didaktischen Reduzierungen hinweisen. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Arbeitsblatt Das Arbeitsblatt zur Simulation des Shapiro-Effekts enthält einfache Aufgaben zur Berechnung der Laufzeit und damit der Wegdifferenz. Außerdem wird die Simulation benutzt, um das Experiment Shapiros nachzustellen. Dabei werden Messungen der Laufzeit mithilfe der Simulation durchgeführt. Die gewonnenen Daten werden grafisch dargestellt und mit der Originalkurve Shapiros verglichen. Abb. 5 zeigt eine grafische Darstellung der mit der Simulation erzielten Ergebnisse. Form und Verhalten der Kurve entsprechen genau den Ergebnissen Shapiros. Einziger Unterschied: Durch die extrem überhöhte Zentralmasse in der Simulation (Faktor 10.000) liegen die Zeitdifferenzen entsprechend in einem anderen Größenbereich.

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE