• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 4
Sortierung nach Datum / Relevanz
Kacheln     Liste

Das Spektrum der Wega

Unterrichtseinheit

Vor etwas mehr als 100 Jahren erhielten die Astronomen die Möglichkeit, auf der Grundlage von Sternspektren die Physik der Sternatmosphären zu erforschen. Der helle Stern Wega besitzt ein sehr übersichtliches Spektrum, für dessen Auswertung und Interpretation Kenntnisse der Oberstufen-Schulphysik genügen.In der Schulsternwarte der Geschwister-Scholl-Realschule in Betzdorf wurde das Spektrum des Sterns Wega im Sternbild Leier mit einem DADOS-Spektrographen der Firma Baader-Planetarium aufgenommen. Basierend auf dieser Aufnahme können unter Verwendung einer Energiesparlampe als Kalibrierlichtquelle die Wellenlängen der im Wega-Spektrum beobachtbaren Absorptionslinien vermessen werden. Für die Interpretation des Spektrums genügt die Kenntnis der wesentlichen Aussagen des Bohrschen Atommodells. Das in der vorliegenden Unterrichtseinheit beschriebene Vorgehen betrachtet die klassischen Themen Wellenoptik und Atommodelle des Oberstufenlehrplans Physik unter astrophysikalischem Aspekt und verknüpft sie mit modernen Methoden rechnergestützter Datenverarbeitung und Auswertung.Das alleinige Erstellen des Spektrums der Wega aus den beiden Bilddateien ("wega_spektrum.jpg" und "spektrum_ESL.jpg") lässt sich als isolierte Unterrichtseinheit auffassen. Man sollte dafür einen Zeitbedarf von zwei Unterrichtsstunden ansetzen. Sinnvoller erscheint es jedoch, die Thematik in einen übergeordneten Zusammenhang zu stellen. Dies erfordert Grundkenntnisse zur Emission beziehungsweise Absorption von Licht im Wasserstoffatom und zur Spektralklassifikation von Sternen. Die wesentlichen Informationen zu beiden Themen können Schülerinnen und Schüler im Internet recherchieren. Wenn allerdings, zum Beispiel aus Zeitgründen, auf eine Internetrecherche verzichtet werden soll, können die in diesem Beitrag dargestellten fachlichen Grundlagen (Datei "wegaspektrum_grundlagen.pdf") als eine kurze Einführung in die Thematik dienen. Grundlagen: Wasserstoffspektrum & Spektralklassen Zum Verständnis des Wega-Spektrums ist die Kenntnis der Theorie zur Lichtabsorption und -emission in Atomen erforderlich. Auch die Spektralklassen der Sterne sollten bekannt sein. Der Stern Wega Der noch junge, bläulich-weiße Stern der Spektralklasse A hat eine Lebenszeit von weniger als einem Zehntel unserer Sonne. Möglicherweise besitzt Wega einen Planeten. Vermessung der Absorptionslinien im Wega-Spektrum Die Verfahrensweise und das Ergebnis werden hier ausführlich vorgestellt und diskutiert. Alle Materialien zur Unterrichteinheit können Sie hier einzeln herunterladen. Die Schülerinnen und Schüler sollen Lichtemission und Lichtabsorption im Bohrschen Atommodell beschreiben und erklären können. Grundlegendes zu den Spektralklassen der Sterne erfahren. verstehen, warum die Spektralklassensequenz der Sternspektren eine Temperatursequenz ist. wesentliche Eigenschaften des Sterns Wega kennen lernen. einen Gitterspektrographen anhand des bekannten Spektrums einer Energiesparlampe kalibrieren. aus einer digitalen Bilddatei das (Absorptions-)Spektrum des Sterns Wega in Form einer Funktion extrahieren, die jeder Wellenlänge im sichtbaren Bereich eine Intensität zuordnet. die Absorptionslinien im Wega-Spektrum als Linien der Balmerserie des atomaren Wasserstoffs erkennen. Thema Das Spektrum der Wega Autoren Peter Stinner, Steffen Urban Fach Physik, Astronomie, Astronomie-AGs Zielgruppe Jahrgangstufe 11-13 Zeitraum 2-5 Unterrichtsstunden Technische Voraussetzungen Rechner mit Internetzugang (Internetrecherche zu fachlichen Grundlagen und zur Auswertung der Spektren) Software Astroart oder kostenlose Astroart-Demoversion zur Erstellung von Intensitätsprofilen längs beliebiger gerader Linien in Bilddateien; Tabellenkalkulation (hier MS Excel) Steffen Urban ist Schüler der Jahrgangstufe 12 am Kopernikus-Gymnasium Wissen. In seiner Facharbeit beschäftigte er sich mit der Kalibrierung des DADOS-Spaltspektrographen. Das Bohrsche Atommodell Nach dem Bohrschen Atommodell gibt es für Elektronen in einem Atom oder Ion verschiedene diskrete Energieniveaus, so genannte Quantenzustände. Es ist nicht möglich, dass die Elektronenenergie Zwischenwerte annimmt. Niels Bohr (1885-1962) schrieb jedem dieser Zustände eine bestimmte Kreisbahn eines Elektrons um den Atomkern zu. Energieniveaus und Spektrallinienserien des Wasserstoffatoms Normalerweise hält sich das Elektron in einem Wasserstoffatom im Grundzustand auf (Quantenzahl: n = 1), also auf der Stufe mit der niedrigsten Energie. Der Begriff "Grundzustand" rührt daher, dass ein mittels Energiezufuhr auf einen höheren Zustand befördertes Elektron nach kurzer Zeit wieder in diesen Grundzustand zurückfällt. Theoretisch gibt es in einem Atom unendlich viele Quantenzustände für Elektronen, deren Energiedifferenzen mit größeren Quantenzahlen jedoch immer geringer werden, und deren Energien gegen einen bestimmten Wert, die Ionisationsgrenze, konvergieren. Wenn man die Gesamtenergie eines Elektrons im Wasserstoffatom an der Ionisierungsgrenze zu Null Elektronenvolt (eV) festlegt, dann hat es im Grundzustand eine Energie von -13,6 Elektronenvolt. Zur Ionisierung eines Wasserstoffatoms im Grundzustand ist also eine Mindestenergie von 13,6 Elektronenvolt erforderlich. Die Energieniveau-Schemata der Atome anderer Elemente sind deutlich komplizierter. Allen gemeinsam ist aber das Auftreten von diskreten Energieniveaus. Aufnahme und Abgabe von Energie in einem Atom Der Wechsel eines Elektrons zwischen zwei diskreten Energiestufen ist mit der Aufnahme oder der Abgabe von Energie verbunden. Dies erfolgt entweder strahlungslos durch eine Kollision mit einem anderen Teilchen, oder aber durch Absorption (Energie wird aufgenommen) oder Emission (Energie wird abgegeben) eines Lichtquants, eines so genannten Photons, der Energie W = h•f. Die Vorgänge der Aufnahme und Abgabe von Energie in einem Atom durch Elektronensprünge ("Quantensprünge") illustriert Abb. 2. Neben den im Wasserstoffatom existierenden Energiezuständen zeigt Abb. 1 auch, welche Übergänge zwischen solchen Zuständen möglich sind, das heißt welche Spektrallinien im Wasserstoffspektrum zu erwarten sind. Im sichtbaren Bereich des Spektrums liegen dabei ausschließlich Linien der Balmerserie. Damit Linien dieser Serie emittiert werden können, müssen Wasserstoffatome sich in einem Quantenzustand mit n = 3 oder höher befinden. Linien der Balmerserie treten im Absorptionsspektrum von Wasserstoff nur dann auf, wenn hinreichend viele Atome sich im Zustand mit n = 2 aufhalten. Wann und warum diese Bedingung von Sternen erfüllt wird, wird im Folgenden erläutert. Planck-Funktion und Absorptionsspektren Sterne existieren in einem sehr großen Oberflächen-Temperaturbereich von etwa 3.000 Kelvin bis über 100.000 Kelvin, wobei die Sonne an der Oberfläche etwa 6.000 Kelvin heiß ist. Sterne strahlen ihre Energie gemäß der Planck-Funktion ab, die in Abb. 3 (zur Vergrößerung bitte anklicken) logarithmisch dargestellt ist. Die Kurvenform ist temperaturunabhängig, die Maxima verschieben sich mit steigender Temperatur nach links. Dadurch erscheinen kühlere Sterne rötlich, heiße Sterne sind bläulich. Betrachtet man neben der spektralen Verteilung der abgestrahlten Energie die Spektren verschiedener Sterne, so erscheint die Situation auf den ersten Blick deutlich unübersichtlicher. Abb. 4 zeigt Spektren von sieben verschiedenen Sternen. Man erkennt, dass alle diese Spektren Absorptionsspektren sind, das heißt in einem eigentlich kontinuierlichem Spektrum fehlt Licht diverser diskreter Wellenlängen. Die dunklen Linien in den Spektren nennt man Absorptionslinien, da Licht der entsprechenden Farbe beziehungsweise Wellenlänge in den Sternatmosphären absorbiert wird. Spektraltypen Die Klassifizierung der Sterne in Spektraltypen erfolgte anfänglich nur anhand von Merkmalen im Spektrum. So nimmt die Intensität mancher Absorptionslinien von einer Klasse zur nächsten manchmal zu oder auch ab. Später erkannte man, dass die Oberflächentemperatur eines Sterns für das Aussehen seines Spektrums verantwortlich ist. Die Spektralklassen wurden in eine Temperatursequenz umgeordnet (Abb. 5), wobei die Oberflächentemperaturen von der Spektralklasse O (für ganz heiße Sterne mit etwa 30.000 bis 50.000 Kelvin Temperatur) über B, A, F, G und K bis hin zu M (etwa 2.000 bis 3.350 Kelvin) abnehmen. Das Merken dieser Reihenfolge erleichtert der Satz " O B*e *A* *F*ine *G*irl, *K iss M e!". Der Vollständigkeit halber sei erwähnt, dass die Spektralklassensequenz in jüngerer Zeit um die Klassen L und T für Zwergsterne erweitert wurde. Eigenschaften der Spektralklassen In den Atmosphären sehr heißer Sterne der Spektralklassen O, B und A können keine Moleküle existieren. Die heftige thermische Bewegung der beteiligten Atome würde jegliche chemische Bindung sprengen. Auf weniger heißen Sternen der Klassen K und M existieren Moleküle. Deren Spektrallinien tauchen als Absorptionslinien in den Spektren auf und machen diese recht unübersichtlich. In K- und M-Spektren gibt es im sichtbaren Wellenlängenbereich keine Linien aus Atomspektren. Die Elektronenhüllen aller Atome befinden sich im energetischen Grundzustand, und alle Absorptionslinien, die durch Lichtabsorption eines Atoms im Grundzustand zustande kommen können, liegen im ultravioletten Bereich. Dagegen ist die Situation bei den heißen Sternen anders gelagert: Die aufgrund ihrer Wärmebewegung große kinetische Energie der Atome führt bei Stößen der Atome untereinander zur Beförderung der Elektronen in höher gelegene Quantenzustände. Derart "angeregte" Atome absorbieren, wie oben erläutert, auch sichtbares Licht. Das Wega-Spektrum Beim Stern Wega (Spektralklasse A) ist die Situation besonders übersichtlich: Das Spektrum enthält im Sichtbaren ausschließlich Absorptionslinien, die zur Balmerserie des atomaren Wasserstoffs gehören. Die Oberflächentemperatur des Sterns und damit die Bewegungsenergie der Wasserstoffatome in der Sternatmosphäre sind nämlich groß genug, dass ständig viele Wasserstoffatome durch Stöße untereinander in den Quantenzustand mit n = 2 gelangen. Damit sind die Bedingungen für das Auftreten sichtbarer Absorptionslinien gegeben (vergleiche Abb. 1). Wega ist der Hauptstern des Sternbilds Leier. Diese Konstellation ist durch den berühmten Ringnebel (M 57) bekannt. Wega bildet zusammen mit Deneb (Hauptstern im Sternbild Schwan) und Atair (Hauptstern im Adler) das so genannte Sommerdreieck (Abb. 6). Sie ist etwa 25,3 Lichtjahre von der Sonne entfernt und damit ein relativ nahe gelegener Stern. Zusammen mit Arktur und Sirius ist Wega einer der hellsten Sterne in der Nachbarschaft der Sonne. Wega diente als Nullpunkt zur Kalibrierung der astronomischen fotometrischen Helligkeitsskala. Sie ist ein bläulich-weißer Stern der Spektralklasse A, der in seinem Kern Wasserstoff zu Helium fusioniert. Mit einem Alter von ungefähr 400 bis 500 Millionen Jahren zählt Wega zu den noch ziemlich jungen Sternen. Wega weist die doppelte Masse und die 37-fache Leuchtkraft der Sonne auf. Das sichtbare Spektrum wird durch Absorptionslinien des Wasserstoffs, speziell durch Linien der Balmerserie, dominiert. Die Linien der anderen Elemente sind nur ganz schwach ausgeprägt. Da massereiche Sterne ihren Wasserstoff viel schneller als kleinere Sterne zu schwereren Elementen fusionieren, ist die Lebenszeit von Wega mit einer Milliarde Jahre vergleichsweise gering. Das entspricht etwas weniger als einem Zehntel der Lebenszeit der Sonne. Mit Lebenszeit ist hier die Zeit gemeint, während der ein Stern Energie aus der Fusion von Wasserstoff freisetzt. Danach wird sich Wega zu einem roten Riesen der Spektralklasse M aufblähen, um schließlich als Weißer Zwerg zu enden. Durch die vermehrte Abstrahlung im Infrarotbereich weiß man, dass Wega von einer Gas- und Staubscheibe umgeben ist. Im Jahr 2003 berechneten britische Astronomen, dass die Eigenschaften dieser Scheibe vermutlich am besten durch einen Planeten, der dem Neptun ähnelt, erklärt werden können. Trotz intensiver Suche konnte bei Wega bis heute aber noch kein Planet nachgewiesen werden. Aufnahme des Wega-Spektrums Die dieser Unterrichtseinheit zugrunde liegenden Spektren der Wega und einer Energiesparlampe wurden mit einem DADOS-Spektrographen der Firma Baader-Planetarium am C8-Teleskop der Schulsternwarte der Geschwister-Scholl-Realschule in Betzdorf gewonnen. Die Methode der Technik der Gewinnung von Spektren als Bilddateien wird ausführlich in der Unterrichtseinheit Spektroskopie an galaktischen Gasnebeln beschrieben. Nachdem das Spektrum der Wega (Abb. 7) zur Verfügung steht, stellt sich die Frage, welche Lichtwellenlänge von welchem Ort im Bild des Spektrums repräsentiert wird. Zur Beantwortung dieser Frage muss der Spektrograph kalibriert (geeicht) werden. Eine Energiesparlampe als Kalibrierlichtquelle Als so genannte Kalibrierlichtquelle verwendet man eine externe Lichtquelle, die hinreichend viele und möglichst genau bekannte Wellenlängen emittiert, die über das gesamte sichtbare Spektrum verteilt sind. Diese Anforderungen erfüllen handelsübliche und preiswerte Energiesparlampen. Diese benötigen im Gegensatz zu den üblicherweise in Physiksammlungen vorhandenen Spektrallampen weder Vorschaltgeräte noch eine Hochspannungsversorgung. Auch das Problem der Erhitzung spielt keine Rolle. Energiesparlampen sind also auch in einer beengten Sternwarte problemlos und gefahrlos zu betreiben. Steffen Urban hat das Referenzspektrum einer Energiesparlampe (ESL) im Rahmen seiner Facharbeit mit großer Genauigkeit vermessen (Abb. 8). Die Fehler bei den Wellenlängenwerten liegen typischerweise um 0,1 Nanometer. Erster Schritt: Das Spektrum der Kalibrierlampe Zu Beginn wird der Spektrograph auf der Grundlage des bekannten Spektrums einer Energiesparlampe (siehe Abb. 8) kalibriert. Wir wählen dazu das untere der drei Spektren im Bild "spektrum_ESL.jpg", das (genau wie das Wega-Spektrum im Bild "spektrum_wega.jpg") mit dem 35 Mikrometer breiten Spalt des DADOS-Spektrographen aufgenommen wurde. Nun gilt es, mithilfe des Programms Astroart und einer Tabellenkalkulationssoftware (hier MS Excel) daraus ein Intensitätsprofil längs einer Strecke durch das Spektrum zu erstellen. Die kostenfreie Demoversion von Astroart reicht für unsere Zwecke aus. Als Endergebnis der Prozedur entsteht ein Diagramm, wie es in Abb. 9 in den Spalten D bis G (oben) zu sehen ist. Abb. 9 zeigt einen Screenshot der Exceldatei "wega_muster_auswertung.xls". Zweiter Schritt: Die Kalibrierfunktion Auf der Erzeugung des Intensitätsprofils des Kalibrierlampen-Spektrums folgt die Ermittlung der Kalibrierfunktion, die jeder Pixelnummer aus Spalte A in Abb. 9 eine Wellenlänge zuordnet. Dabei entsteht die rote Wertetabelle der Kalibrierfunktion in den Spalten P und Q von Abb. 9. Zu dieser Tabelle erstellt man dann ein Diagramm (unteres Diagramm in den Spalten D bis G, Abb. 9). Dritter Schritt: Das Wega-Spektrum Wie oben für das Energiesparlampen-Spektrum beschrieben, verfährt man nun mit dem Wega-Spektrum (Datei "spektrum_wega.jpg"). In Astroart wird von dem Spektrum ein Profil mit den gleichen Endpunkten wie zuvor beim Energiesparlampen-Spektrum erzeugt. Vom Spektrum der Wega liegt dann eine Funktion vor, die jeder Pixelnummer die entsprechende Intensität zuordnet. Mithilfe der im zweiten Schritt gewonnenen Kalibrierfunktion werden dann die Pixelnummern durch Wellenlängen ersetzt. Aus den Spalten J und I (Abb. 9) entsteht schließlich das Wega-Spektrum in seiner endgültigen Form (Spalten L bis O, unteres Bild in Abb. 9). Aus dem Intensitätsprofil des Wega-Spektrums lokalisiert man die ungefähre Lage der drei auffallenden Absorptionslinien. Die Intensitätswerte aus Spalte I in Abb. 9 helfen bei der genauen Festlegung der Intensitätsminima. Das Verfahren ist bei der Ermittlung der Linienmaxima im Energiesparlampen-Spektrum ausführlich beschrieben. Abb. 10 zeigt die Ergebnisse dieser Prozedur und gleichzeitig eine Möglichkeit, die Daten anschaulich darzustellen. Unter den von uns gemessenen Wellenlängen der Absorptionslinien sind die Literaturwerte ergänzt. Die in der Literatur als sichtbar beschriebenen Balmerlinien H-delta (410,2 Nanometer) und H-epsilon (397,0 Nanometer) fehlen hier. Ursache ist ein UV-Sperrfilter vor dem Sensor der verwendeten Kamera. Dieser blockiert sämtliches Licht mit Wellenlängen unter 415 Nanometern. Man erkennt die drei Absorptionslinien H-alpha, H-beta und H-gamma der Balmerserie (vergleiche Abb. 1 ). Damit ist zum Beispiel nachgewiesen, dass die Atmosphäre der Wega größere Mengen an atomarem Wasserstoff enthält. Außerdem kann man daraus schließen, dass diese Wasserstoffatome vergleichsweise hohe Temperaturen haben. Atome, die Licht der Balmerwellenlängen absorbieren, müssen sich im "ersten angeregten Energiezustand" (Quantenzahl n = 2) befinden. Dieser ist nur bei hohen Temperaturen ausreichend besetzt. Wega - ein geeignetes Objekt für den Einstieg in die Spektroskopie Für eine erste Betrachtung des Spektrums eines Himmelsobjekts eignet sich das Spektrum der Wega besonders gut. Da es im sichtbaren Bereich nur die Linien der Balmerserie zeigt, ist es auch für Anfänger auf dem Gebiet der Spektroskopie leicht zu überschauen und zu interpretieren. Abweichung von den Literaturwerten Die in unserer Musterauswertung (siehe Abb. 9) ermittelten Wellenlängen der Absorptionslinien im Wega-Spektrum (Abb. 10) weichen von den Literaturwerten um etwa ein Nanometer ab. Ein Grund dafür ist der Umstand, dass wir uns bei der Festlegung der Orte der Spektrallinien - sowohl im Kalibrier-, als auch im Wega-Spektrum - auf ganzzahlige Pixelwerte beschränkt haben. Wer bereit ist, mehr Aufwand zu betreiben, kann die Linienorte in den Spektren durch Betrachtung der jeweiligen Linienprofile auf etwa 0,1 Pixel genau festlegen und die Abweichungen von den Literaturwerten damit nennenswert reduzieren. (Informationen zur Vorgehensweise finden Sie in der Unterrichtseinheit "Spektroskopie an galaktischen Gasnebeln" im Abschnitt Spektren planetarischer Nebel .) Eine weitere Fehlerursache liegt darin, dass die Funktion "Trendlinie" in Excel, die die Kalibrierfunktion liefert, die Koeffizienten der Terme zweiter und höherer Ordnungen nur auf eine geltende Ziffer genau angibt. Mit anderer Software (zum Beispiel dem Open-Source-Programm Qtiplot) sind exaktere Kalibrierfunktionen konstruierbar. Wikipedia: QtiPlot QtiPlot ist ein Open-Source-Programm zur Analyse und Visualisierung von Daten. Steffen Urban ist Schüler der Jahrgangstufe 12 am Kopernikus-Gymnasium Wissen. In seiner Facharbeit beschäftigte er sich mit der Kalibrierung des DADOS-Spaltspektrographen.

  • Physik / Astronomie
  • Sekundarstufe II

Was sieht ein Satellit? Dem Unsichtbaren auf der Spur

Unterrichtseinheit

In dieser Unterrichtseinheit zu Satelliten setzen sich die Lernenden anhand der Fernerkundung mit dem Thema Optik auseinander. Dabei erkennen sie die Zusammenhänge zwischen elektromagnetischem Spektrum, Reflexion, Absorption und der Entstehung von Satellitenbildern. Die Materialien sind auf Deutsch und auf Englisch verfügbar und somit auch im englisch-bilingualen Unterricht einsetzbar. Die hier vorgestellte Lerneinheit erläutert die Funktionsweise eines Satelliten, der das von der Erdoberfläche reflektierte Licht zur Bildaufnahme nutzt und dabei auch Wellenlängen jenseits des sichtbaren Lichts einbezieht. Zusätzlich zum Verständnis der physikalischen Inhalte lernen die Schülerinnen und Schüler auf diese Weise auch Aspekte der Fernerkundung kennen. Eine "Vermittlerfigur" in Form eines virtuellen Professors begleitet die Lernenden bei der Erforschung des elektromagnetischen Spektrums. Das Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Unterrichtseinheit "Was sieht ein Satellit? Dem Unsichtbaren auf der Spur" beschäftigt sich mit dem Themenkomplex Optik und geht dabei vor allem auf Reflexion, Absorption und die Wellenlängen des elektromagnetischen Spektrums ein. Durch den Bezug zur Satellitenbild-Fernerkundung werden diese drei Bereiche miteinander verknüpft und ergänzt. Zunächst soll an einem einfachen Beispiel die Charakterisierung verschiedener Objekte hinsichtlich ihrer unterschiedlichen Reflexions- und Absorptionseigenschaften untersucht werden. Weiterführend soll das gesammelte Wissen auf den Satelliten übertragen werden, so dass die Funktionsweise eines Satelliten verstanden wird. Als dritter Punkt wird dann neben der Betrachtung des sichtbaren Lichts der erweiterte Bereich des elektromagnetischen Spektrums (infrarotes Licht) mit einbezogen. Ziel der Unterrichtseinheit ist es, Zusammenhänge zwischen elektromagnetischem Spektrum, Reflexion, Absorption sowie Aufnahme und Entstehung von Satellitenbildern zu verstehen. Aufbau des Computermoduls Das interaktive Modul "Was sieht ein Satellit?" gliedert sich in eine Einleitung und zwei darauf aufbauende Bereiche. Inhalte des Computermoduls Hier wird der Aufgabenteil mit den drei Bereichen Einleitung, Satellit und "unsichtbares" Licht genauer beschrieben. Die Schülerinnen und Schüler lernen Reflexionseigenschaften unterschiedlicher Objekte kennen. können die Begriffe "Reflexion" und "Absorption" erklären und unterscheiden. können den Zusammenhang zwischen Objektfarbe und Reflexionseigenschaften erklären. lernen das elektromagnetische Spektrum kennen und verstehen, dass es neben dem sichtbaren Licht noch andere Wellenlängenbereiche gibt. können die Grundlagen der Umwandlung der Reflexionswerte in Bildinformationen beschreiben. können die Entstehung von Falschfarbenbildern beschreiben. Reflexion und Absorption - Alles was wir sehen Einführung in die Thematik, Zusammenhang zwischen Reflexion und Absorption So funktioniert ein Satellit Entstehung von Satellitenbildern anhand des unterschiedlichen Reflexionsverhaltens der Erdoberfläche Dem Unsichtbaren auf der Spur Elektromagnetisches Spektrum Beginn Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik der Satellitenbilder durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus sind die durchgeführten Analysen und Manipulationen des Satellitenbildes nur mithilfe eines Rechners durchführbar - ein Umstand, der den Lernenden den Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher bringt. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Es wird durch Ausführen der Datei Reflexion_Startmanager.exe gestartet. Allgemeine Hinweise Das Computermodul besteht aus drei Bereichen, die aufeinander aufbauen. Zu Beginn ist die gelbe Navigationsleiste am linken Rand noch leer. Erst nach Bestehen eines kleinen Tests am Ende jeder Einheit wird das Icon für den jeweiligen Bereich sichtbar, so dass man später über die Navigationsleiste wieder dorthin zurück gelangen kann. Jeder Bereich enthält einen Aufgabenteil mit Fragestellungen. So können die Schülerinnen und Schüler den Kern des Problems erfassen, durch den Test überprüfen und damit interaktiv arbeiten. Der erste Teil des Moduls wird nach dem Start automatisch geladen. In einem kurzen Einführungstext erfahren die Schülerinnen und Schüler, was sie in dem Modul erkunden und lernen sollen. Sie können interaktive Versuche durchführen, indem sie am Bildschirm das Reflexionsverhalten verschiedener Gegenstände beobachten. Die Fragen unter "Aufgaben" geben Hinweise, worauf dabei zu achten ist. Als Abschluss des Modulteils ist das Bestehen eines kleinen Multiple Choice-Tests erforderlich. Satellit Im zweiten Bereich "So funktioniert ein Satellit" wird das unterschiedliche Reflexionsverhalten von Gegenständen auf die Landschaft übertragen. Mit dem Vorwissen aus der Einführung können die Schülerinnen und Schüler nun diesen Aufgabenteil im Zweiergespräch diskutieren. Abschließend wird das Verständnis wieder mit einem kleinen Quiz überprüft. Sind alle Fragen richtig beantwortet, wird man zum dritten Teil weitergeleitet. Unsichtbares Licht Im dritten Teil ("Dem Unsichtbaren auf der Spur") können die Schülerinnen und Schüler die vorangegangenen Inhalte auf ein echtes Satellitenbild übertragen. Auch hier sind sie aufgefordert, sich in Zweiergruppen auszutauschen und die Fragestellungen am Computer interaktiv zu bearbeiten. Nach richtiger Beantwortung der Testfragen fasst der virtuelle Professor die Erkenntnisse abschließend noch einmal kurz zusammen. Reflexion Im ersten Teil des Lernmoduls werden die Schülerinnen und Schüler zunächst in die Thematik der Reflexion eingeführt. Nachdem sie das Lernprogramm starten, sehen sie zunächst eine relativ dunkle Bildschirmoberfläche. Um die Bedeutung des Lichts hervorzuheben, werden die Lernenden zunächst aufgefordert das Licht anzuschalten. Erst nach Einschalten aller relevanten Geräte (Licht, Kamera und Bildschirm) funktioniert der Versuch. Die Kamera lässt sich mit dem Mauszeiger ansteuern und entlang der Schiene hin- und herbewegen. Indem die Schülerinnen und Schüler mit dem virtuellen Professor spielerisch einen Versuch durchführen, erfahren sie, wie verschieden die Objekte auf dem Tisch - ein Kaktus, eine Chilischote, ein Hühnerei und eine schwarze Arbeitsunterlage - das Licht der Lampe reflektieren. Auf dem Bildschirm können sie nachvollziehen, in welchem Wellenlängenbereich des sichtbaren Lichts ein Objekt sehr viel beziehungsweise sehr wenig reflektiert. So können die Lernenden den Zusammenhang zwischen Objektfarbe und Höhe der Reflexion in den verschiedenen Wellenlängenbereichen herleiten. Absorption Um den Begriff der Absorption näher zu verdeutlichen, ist als Besonderheit eine schwarze Arbeitsunterlage integriert. Die Lernenden sollen zu der Frage angeregt werden, warum auf dem Bildschirm keine Ausschläge zu erkennen sind, wenn sich die Kamera über der Arbeitsunterlage befindet. Die Fragen, die sich unter "Aufgabe" finden, geben Arbeitshinweise zur Versuchsdurchführung (Abbildung 2, zum Vergrößern anklicken). Zur Überprüfung und Festigung des Gelernten ist ein Test integriert, den man über einen Button unten rechts im Bild erreicht (Box mit Fragezeichen). Aufnahme der Erdoberfläche Im zweiten Modulteil soll das Wissen aus dem virtuellen Labor übertragen werden. Ziel ist es, grundsätzlich die Funktionsweise eines Satelliten zu verstehen. Die Schülerinnen und Schüler erfahren, dass Satelliten die Erdoberfläche ähnlich aufnehmen wie zuvor die Kamera die Gegenstände auf dem Tisch im Labor. Ein Satellit misst vergleichbar einer Kamera beziehungsweise eines Spektroradiometers die von der Erdoberfläche reflektierte Strahlung. Darüber hinaus sollen die Schülerinnen und Schüler erfahren, dass die gemessenen Reflexionssignale zu Bildinformation verarbeitet werden können. Die Moduloberfläche des zweiten Teils zeigt zu Beginn eine skizzierte Landschaft über die ein Satellit hinweg fliegt (Abbildung 3). Am Boden zeigt ein rotes Quadrat an, welchen Ausschnitt der Satellit aktuell aufnimmt. Visualisierung Die Lernenden können mit dem Button "Bild übertragen" den aktuellen Ausschnitt der Landschaft visualisieren. Zur Förderung der visuellen Kompetenzen sowie der Sprachkompetenzen werden die Schülerinnen und Schüler dazu aufgefordert die Landschaft zu charakterisieren. Die Bilddarstellung erfolgt im rechten Teil des Bildschirmfensters über ein Farbbild und drei Grauwertbilder. Neben dem Farbbild wird für die Wellenlängenbereiche Blau, Grün und Rot das jeweilige Grauwertbild eingeblendet. Links neben den Bildern ist als zusätzliche Informationsquelle ein Diagramm integriert, in welchem für jedes Bildpixel die Höhe der Reflexion in den drei Wellenlängenbereichen angezeigt wird. Abschließend sollen sich die Lernenden mit der Frage beschäftigen, wie ein Satellit Bilder der Erdoberfläche erzeugt und wie ein Farbbild entsteht. Dritter Bereich: "unsichtbares" Licht Elektromagnetisches Spektrum Im dritten und letzten Teil des Lernmoduls erfolgt eine Erweiterung in der Betrachtung des elektromagnetischen Spektrums: Lernende können sich darüber informieren, dass das Spektrum auch aus weiteren Wellenlängenbereichen besteht. Einige dieser Bereiche des elektromagnetischen Spektrums können vom Satelliten bei der Bilderzeugung zusätzlich genutzt werden. Farbige Satellitenbilder Entsprechend enthält der dritte Modulteil statt einer schematischen Landschaftsskizze ein hochaufgelöstes Satellitenbild als Grundlage. Ähnlich wie im vorherigen Kapitel kann ein Bild übertragen und visualisiert werden. Der Unterschied besteht darin, dass neben den drei Wellenlängenbereichen des sichtbaren Lichts ein vierter Kanal aus dem Bereich des Infraroten Lichts zur Verfügung steht. Die Lernenden können somit aus den vier Kanälen drei auswählen und zur Erstellung eines Farbbildes jedem Kanal eine der Farben Rot, Grün oder Blau zuweisen (Abbildung 4). Durch Mausklick in das Farbbild am rechten oberen Bildschirmrand werden die Reflexionswerte für die einzelnen Wellenlängenbereiche angezeigt. Sie erscheinen als Kurve im elektromagnetischen Spektrum am oberen Bildschirmrand. Über die Kombination der Informationen sollen die Lernenden sich mit dem Begriff Falschfarbenbild auseinandersetzen und erklären können, warum zum Beispiel bei der Kanalkombination Infrarot - Rot - Grün die Vegetationsflächen im Farbbild rot dargestellt werden.

  • Physik / Astronomie
  • Sekundarstufe I

Spektroskopie an galaktischen Gasnebeln

Unterrichtseinheit

Die Astronomie-AG des Kopernikus-Gymnasiums in Wissen (Rheinland-Pfalz) hat die Spektren verschiedener galaktischer Gasnebel aufgenommen. Physikkurse und astronomische Arbeitsgemeinschaften können das Kalibrieren des Spektrographen nachvollziehen und aus den Bilddateien selbst Spektren extrahieren und auswerten. Seit mehr als 150 Jahren ist die Spektroskopie eine tragende Säule der Astrophysik. Mit spektroskopischen Methoden wurde die chemische Zusammensetzung von Sternen, Gasnebeln und des interstellaren Mediums erforscht. In der hier vorgestellten Unterrichtseinheit werden mittels quantitativer Auswertung der Spektren einer HII-Region und dreier planetarischer Nebel die dort vorhandenen chemischen Elemente identifiziert. In einem Fall können zusätzlich Aussagen zur räumlichen Verteilung der Temperatur in den Gasen des planetarischen Nebels abgeleitet werden. Die dieser Unterrichtseinheit zugrunde liegenden Spektren wurden mit einem DADOS-Spaltspektrographen der Firma Baader-Planetarium gewonnen. Abstract Inhalte der vorliegenden Unterrichtseinheit sind die Vermessung und die astrophysikalische Auswertung von Spektren der planetarischen Nebel NGC 6543 (Katzenaugennebel), M 57 (Ringnebel) und NGC 2392 (Eskimonebel), sowie der HII-Region M 42 (Großer Orionnebel). Die Spektren der planetarischen Nebel wurden mit einem DADOS-Spektrographen der Firma Baader-Planetarium als digitale Bilddateien in der Schulsternwarte der Geschwister-Scholl-Realschule in Betzdorf aufgenommen. Das Spektrum der HII-Region Orionnebel wurde im Rahmen eines Praktikums am Observatorium Hoher List des Argelander-Instituts für Astronomie der Universität Bonn gewonnen (ebenfalls mit dem DADOS). Mithilfe kostenlos zugänglicher oder üblicherweise vorhandener Software werden aus den Bilddateien Spektren extrahiert, aus denen die chemische Zusammensetzung der betrachteten Himmelsobjekte und teilweise auch die räumliche Verteilung der vorkommenden Elemente erschlossen werden. Klassische Themen des Oberstufenlehrplans, Wellenoptik und Atommodelle, werden unter astrophysikalischen Aspekten betrachtet und mit modernen Methoden der rechnergestützten Datenverarbeitung und -auswertung verknüpft. Fachliche Grundlagen Physikalische Grundlagen Bohrsches Atommodell, Energieniveaus und Spektrallinienserien des Wasserstoffatoms und Entstehung der Emissionsspektren galaktischer Gasnebel werden kurz erläutert. HII-Regionen Die Photonen heißer Sterne ionisieren Wasserstoffatome interstellarer Gaswolken und bringen diese zum Leuchten. Planetarische Nebel Darstellung der Bedeutung des hydrostatischen Gleichgewichts im Leben eines Sterns sowie Informationen zur Entstehung und zu den Eigenschaften planetarischer Nebel Material, Methoden und Ergebnisse Aufbau und Kalibrierung des DADOS-Spektrographen Informationen zum verwendeten DADOS-Spaltspektrograph und zu den Teleskopen, mit denen die Spektren aufgenommen wurden Spektrum der HII-Region Orionnebel Ausführliche Beschreibung des Verfahrens zur Kalibrierung des Spektrographen mit einer Energiesparlampe und Dokumentation der Ergebnisse Spektren planetarischer Nebel Hinweise zur Auswertung der Spektren, Beschreibung einer vereinfachten Auswertung und Ergebnisse: Elemente und deren räumliche Verteilung in den Nebeln Die Schülerinnen und Schüler sollen Fotoionisation und Lichtemission im Bohrschen Atommodell erklären und beschreiben können. die Entwicklung sonnenähnlicher Sterne über das Riesenstadium bis hin zu weißen Zwergen mit planetarischen Nebeln verstehen. HII-Regionen und ihre charakteristischen Eigenschaften kennen lernen. die Funktionsweise eines Reflexionsgitterspektrographen verstehen. die mit einem Gitterspektrographen gewonnenen Spektren mithilfe des bekannten Spektrums einer Energiesparlampe kalibrieren. aus digitalen Bilddateien Spektren extrahieren, in denen jeder Wellenlänge im sichtbaren Bereich eine Intensität zugeordnet ist. aus Spektren die chemische Zusammensetzung astronomischer Objekte bestimmen. aus dem Spektrum des Ringnebels M 57 Aussagen zur unterschiedlichen räumlichen Verteilung der Elemente Wasserstoff und Sauerstoff in diesem planetarischen Nebel ableiten. Thema Spektroskopie an galaktischen Gasnebeln Autoren Andreas Gerhardus, Daniel Küsters, Peter Stinner Fächer Physik, Astronomie, Astronomie-AGs Zielgruppe Sekundarstufe II Zeitraum je nach Umfang und Intensität 4 bis 10 Stunden Technische Voraussetzungen Rechner mit Internetzugang für die Einzel-, Partner- oder Kleingruppenarbeit Software Astroart (kostenloser Download der Astroart-Demoversion ) zur Erstellung von Intensitätsprofilen längs beliebiger gerader Linien in Bilddateien; Tabellenkalkulationssoftware, hier MS-Excel Für das Praktizieren der Auswertungsmethodik benötigen Sie neben dem "Hilfsmittel-Ordner" nur die Inhalte eines der vier übrigen Ordner. Wenn Sie sich auf ein Beispiel beschränken möchten, ist eine "Grundausrüstung" aus "Hilfsmittel-Ordner" und "M42.zip" zu empfehlen. Daniel Küsters legte im März 2009 sein Abitur am Kopernikus-Gymnasium Wissen (Rheinland-Pfalz) ab. Zurzeit ist er Praktikant bei der Firma EADS Astrium Satellites. Dort beschäftigt er sich im Rahmen einer Definitionsstudie mit experimentellen Untersuchungen für das geplante Weltraum-Gravitationsinterferometer LISA (Laser Interferometer Space Antenna). Peter Stinner ist Lehrer für Physik und Mathematik am Kopernikus-Gymnasium in Wissen (Rheinland-Pfalz). Mit der Wissener Astronomie-AG betreibt er die Sternwarte der Geschwister-Scholl-Realschule in Betzdorf. Das Bohrsche Atommodell Objekte der spektroskopischen Untersuchungen in dieser Unterrichtseinheit sind planetarische Nebel und HII-Regionen. Die entsprechenden Spektren wurden mit einem Reflexionsgitterspektrographen aufgenommen. Um eine fundierte Basis für die praktische Arbeit zu schaffen, werden hier zunächst grundlegende Informationen zur Theorie der Lichtabsorption und -emission vorangestellt. Nach dem Bohrschen Atommodell gibt es für Elektronen in einem Atom oder Ion verschiedene diskrete Energieniveaus, so genannte Quantenzustände. Es ist nicht möglich, dass die Elektronenenergie Zwischenwerte annimmt. Niels Bohr (1885-1962) schrieb jedem dieser Zustände eine bestimmte Kreisbahn eines Elektrons um den Atomkern zu. Energieniveaus und Spektrallinienserien des Wasserstoffatoms Normalerweise hält das Elektron sich auf dem Grundzustand (n = 1), der Stufe mit der niedrigsten Energie, auf. Der Begriff "Grundzustand" rührt daher, dass das Elektron nach kurzer Zeit immer wieder von den höheren Stufen in diesen Zustand zurückfällt. Theoretisch gibt es unendlich viele dieser Quantenzustände, deren Energiedifferenzen jedoch immer geringer werden, und deren Energie gegen einen bestimmten Wert, die Ionisationsgrenze, konvergiert. Wenn man die Gesamtenergie eines Elektrons im Wasserstoffatom an der Ionisierungsgrenze zu Null Elektronenvolt (eV) festlegt, dann hat es im Grundzustand eine Energie von -13,6 Elektronenvolt. Zur Ionisierung eines Wasserstoffatoms ist also eine Mindestenergie von 13,6 Elektronenvolt erforderlich. Die Energieniveau-Schemata der Atome anderer Elemente sind deutlich komplizierter. Allen gemeinsam ist aber das Auftreten von diskreten Energieniveaus. Der Wechsel zwischen zwei diskreten Energiestufen ist mit Aufnahme oder Abgabe von Energie verbunden. Dies erfolgt entweder strahlungslos durch eine Kollision mit einem anderen Teilchen, oder aber durch Absorption (Energie wird aufgenommen) oder Emission (Energie wird abgegeben) eines Lichtquants, eines so genannten Photons. Besitzt ein absorbiertes Lichtquant mehr Energie, als zwischen Grundzustand und Ionisationsgrenze liegt, löst sich das Elektron vom Atom. Dieser Vorgang wird als Photoionisation genannt. So entstandene freie Elektronen werden nach einer gewissen Zeit wegen der elektrischen Anziehungskräfte von Wasserstoffionen (Protonen) wieder "eingefangen". Auf dem Weg in den Grundzustand geben diese Elektronen 13,6 Elektronenvolt ab. Diese Energie kann sich gemäß Abb. 1 auf mehrere Photonen verteilen, deren einzelne Energien erlaubten Energiedifferenzen entsprechen. Auf diese Weise entstehen Emissionslinienspektren, die sich von Element zu Element unterscheiden. In galaktischen Gasnebeln sind unterschiedliche Elemente vorhanden, was zur Folge hat, dass sich das Spektrum dieser Nebel aus den Emissionslinienspektren der beteiligten Elemente zusammensetzt. Damit werden Rückschlüsse auf die im Gasnebel vorhandenen Elemente möglich. Etwa 70 Prozent des interstellaren Gases bestehen aus atomarem Wasserstoff. Man unterscheidet Wolken aus neutralem Wasserstoff, HI (lies: "H-eins"), und ionisiertem Wasserstoff HII (lies: "H-zwei"). Wolken aus neutralem Wasserstoff, die sich fernab von sehr heißen Sternen befinden, sind im sichtbaren Bereich der elektromagnetischen Strahlung nicht beobachtbar, weil kein Mechanismus zur Verfügung steht, der die Elektronen der Wasserstoffatome aus dem Grundzustand in einen höheren Energiezustand befördert. Folglich werden auch keine Photonen emittiert. Anders ist die Situation in der Nähe von leuchtkräftigen und heißen Sternen. Die Strahlung von Sternen mit einer Oberflächentemperatur über 20.000 Kelvin enthält Photonen mit mehr als 13,6 Elektronenvolt in hinreichender Anzahl, um genügend viele Wasserstoffatome zu ionisieren. Bei deren Rekombination entsteht nach den im Kapitel Physikalische Grundlagen beschriebenen Mechanismus das sichtbare Wasserstoffspektrum. Neben Wasserstoff enthalten HII-Regionen auch Sauerstoff, Helium und Stickstoff. Auch deren Emissionslinien sind in den Spektren von HII-Regionen vertreten. Ein Paradebeispiel für eine HII-Region ist der bekannte Orionnebel. Das Foto des Nebels in Abb. 3 (zur Vergrößerung anklicken) entstand im Rahmen eines Beobachtungspraktikums unserer Astronomie-AG im Observatorium Hoher List in der Eifel. Als ersten planetarischen Nebel entdeckte Charles Messier (1730-1817) im Jahr 1764 den Hantelnebel M 27 im Sternbild Füchslein. Weil die meisten früh entdeckten planetarischen Nebel in den damaligen Teleskopen dem Erscheinungsbild der Planetenscheibchen der Gasplaneten ähnelten, prägte Wilhelm Herschel (1738-1822) diesen irreführenden Begriff. Planetarische Nebel haben nichts mit Planeten zu tun. Vielmehr handelt es sich um von einem Stern abgestoßene gasförmige Materiewolken, die durch diesen, den so genannten Zentralstern, zum Leuchten angeregt werden. Das hydrostatische Gleichgewicht: Gravitation und Strahlungsdruck Planetarische Nebel entstehen immer dann, wenn sich das "Leben" eines Sterns von ein bis fünf Sonnenmassen dem Ende nähert. Während der überwiegenden Zeit seines Lebens fusioniert ein Stern in seinem Inneren Wasserstoff zu Helium. Dadurch entsteht ein nach außen gerichteter Strahlungsdruck, der der eigenen Gravitation des Sterns entgegenwirkt und somit verhindert, dass er kollabiert (Abb. 4). Die Patt-Situation dieser Kräfte bezeichnet man als hydrostatisches Gleichgewicht. Abnahme des Strahlungsdrucks führt zur Kontraktion eines Sterns Nachdem der Wasserstoffvorrat weitgehend aufgebraucht ist, nimmt der Strahlungsdruck eines Sterns ab. Dann beginnt er, sich unter seiner eigenen Gravitation zusammenzuziehen. Durch die Verdichtung steigt die Temperatur des Sterns an. Damit werden die Bedingungen für die Fusion von Helium zu schwereren Elementen, wie zum Beispiel Kohlenstoff und Sauerstoff, geschaffen. Weil die Temperatur des Sterns nach außen hin abfällt, nimmt auch die relative Häufigkeit der schweren Elemente entsprechend nach außen hin ab. Der Stern pulsiert Die äußeren Regionen des Sterns verlieren nach und nach ihre Masse in Form von Sternenwind: Da die Reaktionsgeschwindigkeit der Heliumfusion proportional zu einer sehr hohen Potenz der Temperatur ist (Literaturangaben zum Grad der Potenz sind widersprüchlich!), erhöht sich der Strahlungsdruck bereits bei einem leichten Temperaturanstieg übermäßig. Als Folge dessen dehnt sich die äußere Schicht des Sterns zunächst aus. Dadurch verliert sie an Temperatur und kontrahiert wieder, es entsteht eine Pulsation. Die Expansionsgeschwindigkeit der abgestoßenen Materie beträgt etwa 25 Kilometer pro Sekunde. Durch den Sternenwind wird der heiße Kern immer weiter freigelegt, weshalb später auch ein Anteil der schwereren Elemente abgestoßen wird. Der heiße Zentralstern bringt das abgestoßene Gas zum Leuchten Mit der Zeit steigt somit die Oberflächentemperatur des Zentralsterns. Entsprechend verschiebt sich sein Strahlungsmaximum in den ultravioletten Bereich. Deshalb werden überwiegend hochenergetische Photonen emittiert, welche das abgestoßene Gas nach den bereits dargestellten Mechanismen zum Leuchten anregen. Ein planetarischer Nebel ist entstanden. Planetarische Nebel bestehen zu etwa 70 Prozent aus Wasserstoff, 28 Prozent Helium und neben geringen Mengen anderer Elemente aus Stickstoff, Kohlenstoff und Sauerstoff. Diese Metalle - so bezeichnen Astronomen alle Elemente, die schwerer als Helium sind - stellen einen wichtigen Schritt in der Entwicklung des Universums dar. Sie werden im interstellaren Raum angereichert und sind ein wichtiger Baustoff für die Entstehung der nachfolgenden Sternengenerationen, von Planeten und von Leben. Form Nur jeder fünfte planetarische Nebel ist kugelförmig. Alle anderen haben komplexe oder bipolare Strukturen, wobei die Gestalt formenden Mechanismen nicht eindeutig geklärt sind (Abb. 5). Ursachen könnten Magnetfelder oder Wechselwirkungen mit massereichen Objekten sein. Größe Die Radien der planetarischen Nebel liegen in der Größenordnung von 0,2 Parsec (1 Parsec = 3,3 Lichtjahre). Durch die oben beschriebene Expansion werden sie zunehmend diffuser und vermischen sich mit der interstellaren Materie. Ab einem Radius von etwa 0,7 Parsec emittieren sie so wenig Strahlung, dass sie unsichtbar werden. Flüchtige Erscheinungen Planetarische Nebel sind aufgrund ihrer Expansion in der Regel nur etwa 10.000 Jahre sichtbar. Nach astronomischen Maßstäben ist das eine äußerst kurze Zeitspanne. Umso erstaunlicher ist es, dass man momentan 1.500 planetarische Nebel in unserer Galaxie kennt. Ihre tatsächliche Anzahl auf wird 10.000 bis 50.000 geschätzt. Dichte Die mittlere Dichte der planetarischen Nebel beträgt meist weniger als 10.000 Teilchen pro Kubikzentimeter. Das entspricht dem besten auf der Erde erzeugbaren Hochvakuum. Aus diesem Grund dienen planetarische Nebel den Astrophysikern auch als "Weltraumlaboratorien", deren Bedingungen auf der Erde kaum zu erzeugen sind. Vom mysteriösen Element "Nebulium" In den Spektren planetarischer Nebel und des Orionnebels treten im blauen Spektralbereich starke Emissionslinien bei 495,9 Nanometern und bei 500,7 Nanometern auf (siehe Abb. 9). Lange Zeit misslangen alle Versuche, diese Linien in Verbindung mit Spektrallinien bekannter Elemente zu bringen. Man ging daher von einem neuen Element aus, dass man "Nebulium" nannte. Erst 1927 konnte gezeigt werden, dass es sich bei den fraglichen Spektrallinien um "verbotene Linien" des zweifach positiv geladenen Sauerstoff-Ions handelt. Dieser wird als OIII (lies: "O-drei") bezeichnet. Entstehung der verbotenen OIII-Linien Bei der Entstehung dieser Linien spielen so genannte metastabile Energiezustände des OIII die entscheidende Rolle. Die Lebensdauer solcher Zustände, das heißt die Verweildauer der Elektronen auf diesen Energieniveaus, liegt um mehrere Größenordnungen über der von normalen Niveaus. Die zweifach positiv geladenen Sauerstoff-Ionen gelangen durch Lichtabsorption in hoch liegende Energiezustände und aus diesen durch Lichtemission auch in metastabile Zustände. Bei der Entstehung der "verbotenen Linien" gehen Elektronen von einem metastabilen Energiezustand in einen tieferen Zustand über. Aus Gründen der Drehimpulserhaltung muss bei solchen Übergängen elektromagnetische Strahlung höherer Multipolordnungen entstehen, was nur mit äußerst geringer Wahrscheinlichkeit der Fall ist. Warum sind verbotene OIII-Linien nicht auf der Erde zu beobachten? Die Lebensdauer eines metastabilen Zustands ist so groß, dass auf der Erde auch beim bestmöglichen Vakuum ein OIII-Ion in einem solchen Zustand seine Energie durch einen Stoß mit einem anderen Atom oder Ion strahlungslos verliert, bevor es sie zum Beispiel als elektromagnetische Quadrupolstrahlung abgeben kann. Daher sind die OIII-Linien bei 495,9 Nanometern und bei 500,7 Nanometern auf der Erde nicht zu beobachten. In galaktischen Gaswolken ist die Konzentration der Atome beziehungsweise Ionen jedoch geringer als in dem besten irdischen Vakuum. Stöße der OIII-Teilchen im metastabilen Zustand finden dort also so gut wie keine statt. Daher kann auch keine strahlungslose Energieabgabe stattfinden. Da die Wahrscheinlichkeit für die "verbotenen Übergänge" zwar klein, aber größer als Null ist, zerfallen die metastabilen Zustände dann irgendwann durch Photonenemission und erzeugen so die Linien des "Nebuliums" (Frank Gieseking, Planetarische Nebel Teil 1, Sterne und Weltraum, 1983/2, Seite 68-74; Planetarische Nebel Teil 3, Sterne und Weltraum, 1983/7, Seite 336-341). Aufbau des Geräts Die dieser Unterrichtseinheit zugrunde liegenden Spektren wurden mit einem DADOS-Spaltspektrographen der Firma Baader-Planetarium gewonnen (Abb. 6). Die Teleskop-Optik bündelt das Licht eines zu spektroskopierenden Objekts auf den Spektrographenspalt. Das aus dem Spalt austretende Licht geht durch eine Kollimatorlinse, um dann als paralleles Lichtbündel auf ein Reflexionsgitter zu treffen. Dieses Gitter ist das dispergierende Element, welches das Licht in seine spektralen Bestandteile zerlegt. Eine zweite Kollimatorlinse nach dem Gitter leitet das in die vorhandenen Spektralfarben aufgespaltene Licht zur visuellen Beobachtung oder zur Fotografie weiter. Der DADOS-Spektrograph besitzt drei nebeneinander liegende Spalte unterschiedlicher Breite. Ist man an einer großen Auflösung interessiert, wählt man den schmalen Spalt. Ist man auf kurze Belichtungszeiten angewiesen, verwendet man den breiten Spalt. Die Spalte des DADOS besitzen folgende Breiten: 50 Mikrometer 25 Mikrometer 35 Mikrometer Bei der Spektroskopie des großflächigen Orionnebels konnte die Astronomie-AG Wissen im Rahmen eines Praktikums das RC-Teleskop des Observatoriums Hoher List nutzen. Das Bild des Nebels leuchtete dabei alle drei Spalte gleichzeitig aus. Die Aufnahme in Abb. 7 zeigt daher drei Spektren mit unterschiedlichen Auflösungen und Helligkeiten (oben: Spaltbreite 50 Mikrometer; mittig: Spaltbreite 25 Mikrometer; unten: Spaltbreite 35 Mikrometer). Bei weniger ausgedehnten Objekten, wie zum Beispiel den planetarischen Nebeln, lässt sich nur einer der drei Spalte ausleuchten. Zwei Methoden Nachdem ein Spektrum aufgenommen wurde, stellt sich die Frage, welche Lichtwellenlänge von welchem Ort im Bild des Spektrums repräsentiert wird. Der Spektrograph muss kalibriert (geeicht) werden. Dafür setzten wir zwei Verfahren ein: Spektrallinien des Wasserstoffs Die erste Methode nutzt die in jedem Gasnebel vorhandenen Spektrallinien des Wasserstoffs als Bezugswellenlängen und kommt daher ohne eine zusätzliche Kalibrierlichtquelle aus. Die Vorgehensweise wird im Zusammenhang mit der Auswertung des Spektrums von NGC 2392 (Eskimonebel) erläutert (siehe Spektren planetarischer Nebel ). Spektrallinien von Energiesparlampen Formal richtiger und methodisch exakter - allerdings auch aufwändiger - ist das zweite Verfahren, bei dem eine externe Lichtquelle genutzt wird, die hinreichend viele und möglichst genau bekannte Wellenlängen emittiert, die über das gesamte sichtbare Spektrum verteilt sind. Diese Anforderungen an eine Kalibrierlichtquelle erfüllen handelsübliche und preiswerte Energiesparlampen. Die Methode wird ausführlich bei der Auswertung des Orionnebel-Spektrums beschrieben (siehe Spektren planetarischer Nebel ). Hinweise zur Kalibrierung Für die Kalibrierung des Spektrographen nimmt man unmittelbar nach der Aufnahme jedes auszuwertenden Spektrums ein Spektrum der Energiesparlampe auf. Wichtig ist dabei, dass zwischen beiden Aufnahmen an der Apparatur (Teleskop, optische Zusatzteile, Spektrograph, Aufnahmekamera) keine Änderungen vorgenommen werden. Jedes ausgetauschte optische Bauteil und jede Änderung der Gitterposition im Spektrographen ändern den Ort einer bestimmten Spektrallinie auf dem Sensor der Kamera. Die Technik des Kalibriervorgangs wird noch im Zusammenhang mit der Vermessung des Orionnebel-Spektrums ausführlich beschrieben ( Spektrum der HII-Region Orionnebel ). Observatorium Hoher List Der Spektrograph war zur Untersuchung des Orionnebels am Ritchey-Chretien-Teleskop (kurz: RC-Teleskop) des Observatoriums Hoher List montiert. Dieses Spiegelteleskop ist mit einer Brennweite von 4,80 Metern und dem Objektivdurchmesser 60 Zentimetern ein vergleichsweise großes Gerät. Schulsternwarte Betzdorf Etwas bescheidener sind die Dimensionen des C8-Teleskops in der Schulsternwarte der Geschwister-Scholl-Realschule in Betzdorf, mit dem die Spektren der planetarischen Nebel aufgenommen wurden. Abb. 9 zeigt den experimentellen Aufbau. Aufnahmeoptik ist ein Celestron-8-Schmidt-Cassegrain-Spiegelteleskop mit einer Brennweite von 2 Metern und einem Objektivdurchmesser von 20 Zentimetern. Daran sind nacheinander ein Klappspiegel, der DADOS-Spektrograph und eine digitale Spiegelreflexkamera angebaut. Die Klappspiegeleinheit kann das Licht entweder unmittelbar auf den Spektrographenspalt weiterleiten oder den Strahlengang des Teleskops um 90 Grad in ein Okular umlenken. Letzteres macht man, um ein zu spektroskopierendes Objekt überhaupt erst einmal zu finden und dann in der Mitte des Teleskopgesichtsfelds zu platzieren. Dann wird der Spiegel umgeklappt und das Objektbild auf den DADOS-Spalt zentriert. Jetzt kann die Belichtung ausgelöst werden, die typischerweise 45 bis 60 Minuten erfordert. Während dieser Zeit muss die Nachführung des Teleskops hochgradig präzise laufen, da sonst das Bild unseres Untersuchungsobjekts ganz schnell vom Spektrographenspalt verschwinden würde. Dazu wird über ein Linsenfernrohr als so genanntes Leitrohr mit einer ST4-CCD-Kamera die Position eines Sterns beobachtet. Ändert sich die Sternposition auf dem Sensor der ST4-Kamera, dann erhält die Teleskopnachführung einen Impuls, der diese Abweichung korrigiert. Bei der Vermessung des Spektrums von M 42, einer HII-Region, wurde für die Kalibrierung des Spektrographen das Spektrum einer handelsüblichen Energiesparlampe verwendet. Das gesamte Verfahren der Vermessung und Auswertung verläuft über folgende Schritte: Nach der Aufnahme des Spektrums von M 42 wird mit der kostenfreien Demoversion von Astroart eine Intensitätskurve des Spektrums erstellt. Die Intensitätskurve von M 42 wird als TXT-Datei gespeichert und in ein Tabellenkalkulationssystem (hier Excel) importiert. Die Daten werden in Excel als Intensitätskurve dargestellt. Mit einem nach der Spektroskopie des Nebels ohne Veränderung an den Geräten (!) aufgenommenen Spektrum der Energiesparlampe wird analog verfahren. Mithilfe eines vorhandenen, exakt ausgemessenen Kalibrierungsspektrums der Energiesparlampe (spektrum_energiesparlampe.jpg) wird dann eine Kalibrierungsfunktion ermittelt. Aus der gewonnenen Formel der Kalibrierungsfunktion berechnet Excel für jede Pixelnummer des Spektrums von M 42 die zugehörige Wellenlänge. Materialien bei Lehrer-Online Das gesamte Verfahren wird ausführlich in der Datei "spektrum_vermesseung_m42.pdf" beschrieben. Die Schritt-für-Schritt-Anleitung veranschaulicht die Arbeit mit den Programmen Astroart und Excel per Screenshots. Alle weiteren Daten und Dateien, mit denen Sie die Prozedur selbst durchführen können, stehen im Folgenden einzeln und in den ZIP-Archiven auf der Startseite der Unterrichtseinheit als Pakete zur Verfügung. Die Ergebnisse sind in Abb. 10 und Abb. 11 (zur Vergrößerung anklicken) dargestellt. Im Orionnebel konnte eindeutig das Vorkommen folgender Stoffe nachgewiesen werden: ionisierter Wasserstoff zweifach ionisierter Sauerstoff neutrales Helium einfach ionisierter Stickstoff Es ist bemerkenswert, dass der Nachweis der beiden Linien des zweifach ionisierten Sauerstoffs bei etwa 500 Nanometern so deutlich gelungen ist. Da diese Linien "verboten" sind, konnten wir zeigen, dass die Materiedichte in M 42 (ebenso wie in den betrachteten planetarischen Nebeln) sehr gering ist - noch geringer als im besten künstlich hergestellten Vakuum auf der Erde. Die Entstehung dieser verbotenen Linien wurde bereits im Kapitel Planetarische Nebel erläutert. Anfangs- und Endpunkte für die Profillinien Das Verfahren bei der Konstruktion und Auswertung der Spektren planetarischer Nebel unterscheidet sich nicht von der Vorgehensweise bei der Bearbeitung des Spektrums der HII-Region M 42. Die benötigten Bilddateien und unsere eigenen Auswertungen (Excel-Dateien) können Sie hier einzeln (siehe unten) oder als ZIP-Archive auf der Startseite der Unterrichtseinheit herunterladen. Der Erfolg einer Auswertung hängt von der Wahl der Linie in der Bilddatei eines Spektrums ab, längs der das Intensitätsprofil ermittelt wird. Wir empfehlen folgende Anfangs- und Endpunkte für die Profillinien (die vorgeschlagenen Profile sind natürlich nicht die einzig möglichen): Katzenaugennebel (NGC 6543) (X1; Y1) = (1208, 1301) bis (X2; Y2) = (2248; 1375) Eskimonebel (NGC 2392) (X1 ;Y1) = (1265; 1415) bis (X2; Y2) = (2210; 1515) Ringnebel (M 57) (X1; Y1) = (1220; 1260) bis (X2; Y2) = (2185; 1330) Asymmetrische Spektrallinien Bei der Aufnahme der Spektren von planetarischen Nebeln wurde der mit 50 Mikrometern breiteste der drei DADOS-Spalte verwendet. Ungenauigkeiten bei der Nachführung des Teleskops führen bei sehr hellen Spektrallinien zu Asymmetrien. Abb. 12 zeigt am Beispiel der unsymmetrischen OIII-Linie bei 495,6 Nanometern im Spektrum des Katzenaugennebels (NGC 6543), wie man den "Linienschwerpunkt" dennoch recht genau ermitteln kann: Man druckt den fraglichen Teil des Spektrums aus und bestimmt durch Nachmessen die Linienbreiten bei verschiedenen Intensitäten (rote Linien in Abb. 12). Das arithmetische Mittel der Pixelnummern bei den Linienmitten liefert die Pixelnummer des Linienschwerpunkts, die dann in die Auswertung eingeht. Die Excel-Datei "NGC6543_komplettauswertung.xls" (siehe unten) enthält bereits Profile wie in Abb. 12 für die drei hellsten Spektrallinien. Vereinfachtes Auswertungsverfahren Das hier am Beispiel des Eskimonebels (NGC 2392) vorgestellte Kalibrierungsverfahren setzt die Existenz der Spektrallinien der Balmerserie des Wasserstoffs im Nebelspektrum voraus und nutzt diese (in jedem galaktischen Gasnebel vorhandenen Spektrallinien) als Bezugswellenlängen. Es kommt daher ohne den zeitaufwändigen Vorgang der Kalibrierung auf der Basis des Energiesparlampenspektrums aus. Im Vergleich zu dem für den Orionnebel (M 42) beschriebenen Verfahren ist es methodisch jedoch weniger exakt. Informationen zum Nebel Der Katzenaugennebel (NGC 6543) befindet sich im Sternbild Drache. Verglichen mit fast allen anderen bekannten planetarischen Nebeln ist er sehr komplex strukturiert. Hochauflösende Aufnahmen des Hubble-Weltraumteleskops (Abb. 13) enthüllten außergewöhnliche Strukturen wie Knoten, Jets und bogenartige Merkmale. NGC 6543 wurde am 15. Februar 1786 von Wilhelm Herschel entdeckt. Es war der erste planetarische Nebel, dessen Spektrum im Jahr 1864 untersucht wurde. Der zentrale Stern der Spektralklasse O besitzt eine Oberflächentemperatur von 60.000 Kelvin und bringt die Atome und Ionen des Nebels zum Leuchten. Spektrum des Katzenaugennebels Abb. 14 zeigt das DADOS-Spektrum des Katzenaugennebels zusammen mit dem kontinuierlichen Spektrum des Zentralsterns. Man findet darin die vom Orionnebel her bekannten Linien von Wasserstoff und zweifach ionisiertem Sauerstoff (OIII). Im Unterschied zu den anderen untersuchten planetarischen Nebeln enthält NGC 6543 auch neutrales Helium. Ionisiertes Helium fehlt im Katzenaugennebel. Informationen zum Nebel Der Eskimonebel (NGC 2392) ist ein planetarischer Nebel im Sternbild Zwillinge. Er ist ungefähr 3.000 Lichtjahre von uns entfernt. Abb. 15 zeigt eine Aufnahme des Hubble-Weltraumteleskops. Der Nebel ist vor einigen Tausend Jahren entstanden, als der etwa sonnengroße Zentralstern seine äußere Hülle durch eine Eruption abgeworfen hat. Seine Leuchtkraft übertrifft die der Sonne um das 40fache. Der Eskimonebel expandiert in 30 Jahren um etwa eine Bogensekunde. Spektrum des Eskimonebels Das DADOS-Spektrum des Eskimonebels ist in Abb. 16 dargestellt. Dem Linienspektrum des Gasnebels ist das kontinuierliche Spektrum des Zentralsterns überlagert. Am Beispiel des Eskimonebels wird oben ein vereinfachtes Auswertungsverfahren beschrieben, bei dem die Spektrallinien des im Nebel vorhandenen Wasserstoffs als Bezugswellenlängen genutzt werden. Das Verfahren kann natürlich auch auf alle anderen Nebel angewendet werden. Informationen zum Nebel Der Ringnebel (M 57) ist der Überrest eines Sterns, der vor etwa 20.000 Jahren seine äußere Gashülle abgestoßen hat. Letztere dehnt sich heute mit einer Geschwindigkeit von etwa 20 Kilometern pro Sekunde aus. Abb. 17 zeigt eine Aufnahme des Hubble-Weltraumteleskops. Der scheinbare Durchmesser des Nebels beträgt derzeit zwei Bogenminuten. Bei einer Entfernung von 2.300 Lichtjahren entspricht dies einem absoluten Durchmesser von etwa 1,3 Lichtjahren. Das ringförmige Aussehen des Nebels im Teleskop prägte den Namen "Ringnebel in der Leier". Im Zentrum des Nebels befindet sich ein weißer Zwergstern mit einer Oberflächentemperatur in der Größenordnung von 100.000 Kelvin. Spektrum des Ringnebels Im Spektrum von M 57 (Abb. 18), aber auch in dem des Katzenaugennebels (Abb. 14), erkennt man neben den beschrifteten Emissionslinien des Nebels zahlreiche weitere Linien. Diese können nicht von den Nebeln stammen, denn ihre Form lässt erkennen, dass ihr Licht jeweils den gesamten Spalt ausgeleuchtet hat. Es handelt sich hierbei um das Spektrum der Lichtverschmutzung, also der Aufhellung des Nachthimmels durch künstliche Beleuchtung. Am meisten fallen die blaue und die grüne Linie der weit verbreiteten Quecksilberlampen auf, wobei die blaue Linie fast mit der H-gamma-Linie zusammenfällt. Temperaturverteilung im Ringnebel Das Spektrum des Ringnebels M 57 zeigt eine weitere Besonderheit (Abb. 18): Die "Breite" der Spektrallinien erscheint an deren oberen und unteren Rändern deutlich größer als im zentralen Bereich. Aus dieser Beobachtung ergeben sich Aussagen über die Temperaturen in verschiedenen Zonen des Nebels. Während der gesamten Belichtungszeit des Spektrums war der Ringnebel, wie in Abb. 18 veranschaulicht, auf den Spektrographenspalt fokussiert. Die sichtbare "Ringform" des Nebels führte deshalb dazu, dass der Spalt inhomogen ausgeleuchtet wurde. In Abb. 18 sind zwei Intensitätsprofile zu sehen, welche längs der hellsten Spektrallinien von Wasserstoff und Sauerstoff gewonnen wurden (gelbe Linien in Abb. 18). Daraus lassen sich Aussagen zur Temperaturverteilung im Nebel ableiten: Wasserstoff Der Wasserstoff ist im inneren Bereich des Nebels fast vollständig ionisiert (Ionisierungsenergie 13.6 eV, siehe Abb. 1. Man beobachtet kaum Licht von Linien der Balmerserie, da diese beim Einelektronensystem Wasserstoff nur im neutralen Zustand entstehen können. Die sichtbare Außenkante des Ringnebels, das heißt der Intensitätsabfall an den äußeren Flanken der Kurve im rechten Diagramm von Abb. 18, beschreibt nicht die Grenze der räumlichen Wasserstoffverteilung, sondern den Bereich, in dem die Temperatur unter etwa 5.000 K sinkt. Die höheren Energieniveaus für Balmer Linien können dann nicht mehr besetzt werden. Sauerstoff Beim Sauerstoff sind die Verhältnisse deutlich komplizierter: Man benötigt 13,6 eV, um vom neutralen OI zum einfach ionisierten OII zu kommen und weitere 35.1 eV, um OII ein weiteres Mal zu OIII zu ionisieren. Zusätzlich sind weitere 5.4 eV erforderlich, um im zweifach ionisierten Sauerstoff OIII den für die Entstehung der Linien bei 500,7 Nanometer und 495.9 Nanometer erforderlichen Energiezustand besetzen zu können. Diese insgesamt 54, 1 eV erhält ein Sauerstoffatom in mindestens drei aufeinander folgenden Prozessen von Photonen aus der Strahlung des Zentralsterns des Nebels. Einfache Schlüsse aus dem Verlauf der Kurve im linken Diagramm von Abb. 18 sind deshalb nicht möglich. Genauigkeit der Messungen Die von uns ermittelten Wellenlängen der Emissionslinien im Orionnebel (siehe Abb. 11 ) weichen von den Literaturwerten nur um einige Zehntel Nanometer ab. Die experimentellen Fehler in den Spektren der planetarischen Nebel (siehe Excel-Dateien bei den Downloadmaterialien) liegen zwischen Null und 1,5 Nanometern. Dies ist damit zu erklären, dass die Spektren der planetarischen Nebel mit dem breitesten der DADOS-Spalte aufgenommen wurden. In den Bilddateien werden die Emissionslinien damit automatisch breiter und bei Nachführfehlern zusätzlich unsymmetrisch. Rauschminderung Schwache Linien, die vom Auge in den Bildern eindeutig erkannt werden, verschwinden in den Intensitätsprofil-Spektren öfter im Rauschen. Wer bereit ist, zur Rauschminderung mehr Aufwand zu betreiben, kann natürlich länger belichten. Man kann auch mehrere parallele Linien durch die Spektren legen und die zugehörigen Intensitätskurven Punkt für Punkt aufsummieren. Damit "simuliert" man eine längere Belichtungszeit. Auf diese Weise sollte das Rauschen drastisch vermindert werden, so dass schwache Linien besser erkennbar werden. Frank Gieseking Planetarische Nebel Teil 1, Sterne und Weltraum, 1983/2, Seite 68-74 Frank Gieseking Planetarische Nebel Teil 3, Sterne und Weltraum, 1983/7, Seite 336-341

  • Physik / Astronomie
  • Sekundarstufe II

Vermessung der Spektren von Energiesparlampen

Unterrichtseinheit

Spätestens seit die Europäische Union das Ausstiegsszenario für die Glühlampe eingeläutet hat, ist die Energiesparlampe in aller Munde. Fragen wie „Nach welchem Prinzip funktioniert eine Energiesparlampe?“ und „Welches sind die spektralen Bestandteile des Lichts von Energiesparlampen?“ sind deshalb für den schulischen Physik- und Chemieunterricht von großer Aktualität. Spektren von Energiesparlampen lassen sich auf der Basis der hier bereitgestellten Materialien im Oberstufenunterricht unter Einsatz geeigneter Software von Schülerinnen und Schülern mit großer Präzision in Eigentätigkeit konstruieren und vermessen. Aus solchen Spektren können dann Kenntnisse über die Lichtentstehung durch Quantensprünge von Elektronen in den Atomhüllen von Quecksilberatomen und Informationen zur Fluoreszenz in Leuchtstoffen und Farbstoffen extrahiert werden. Als Kalibrierspektren, das heißt als "Wellenlängen-Normale", dienen dabei die Spektren von Wasserstoff- und Quecksilberspektrallampen, wie sie in schulischen Physiksammlungen üblicherweise vorhanden sind. Alle in der Unterrichtseinheit einzusetzenden Spektren stehen als fotografische Spektren in Form von digitalen Bilddateien als Download zur Verfügung. Die Fotos wurden mit einer digitalen Spiegelreflexkamera (Canon EOS1000D) an einem DADOS-Spaltspektrograph aufgenommen. Die Materialien der Unterrichtseinheit werden durch einen Beitrag aus der GDCh-Wochenschau-Artikel zum Thema (Gesellschaft Deutscher Chemiker e.V.) ergänzt. Dieser skizziert die Diskussion um die Energiesparlampe und stellt die "Chemie dahinter" vor. Zudem werden Technik und Potenziale der LEDs vorgestellt. Das Minimalziel der Unterrichtseinheit, die Konstruktion des Spektrums einer Energiesparlampe mit Ermittlung der Wellenlängen der im Spektrum beobachtbaren Emissionslinien mit einer Genauigkeit von etwa einem Nanometer, ist in nur einer Doppelstunde zu realisieren. Der Zeitaufwand vergrößert sich naturgemäß, wenn man deutlich präzisere Ergebnisse anstrebt. Gleiches gilt, wenn man die Thematik in größere Zusammenhänge einbetten möchte. Dabei geht es dann um Aufbau und Funktionsprinzip von Energiesparlampen und um die Wirkungsweise ihrer Leuchtstoffe. Informationen zu diesen Themen finden Schülerinnen und Schüler im Internet. Für einen ersten Überblick gibt der folgende fachliche Kommentar eine kurze Einführung in die Thematik "Leuchtstoffröhre". Die Begriffe "Energiesparlampe" und Leuchtstoffröhre" werden dabei synonym gebraucht. Fachlicher Kommentar: Leuchtstoffröhren Allgemeine Informationen zu Energiesparlampen und Leuchtstoffröhren und dazu, wie diese UV-Licht in sichtbares Licht verwandeln Aufnahme und Vermessung der Spektren Eine ausführliche Anleitung, Spektren der Kalibrierlampen und der zu vermessenden Energiesparlampen sowie eine Beispielauswertung können Sie hier herunterladen. GDCh-Wochenschau-Artikel zum Thema Der GDCh-Artikel skizziert die Diskussion um die Energiesparlampe und stellt die "Chemie dahinter" vor. Zudem werden Technik und Potenziale der LEDs vorgestellt. Die Schülerinnen und Schüler sollen Aufbau und Funktion von Energiesparlampen beschreiben und erklären können. die Wirkungsweise der Leuchtstoffe und deren Beitrag zur Energie-Effizienz verstehen. einen Gitterspektrographen anhand der bekannten Spektren von atomarem Wasserstoff und von Quecksilber kalibrieren. aus digitalen Bilddateien die Emissionsspektren von Leuchtstofflampen in Form einer Funktion extrahieren, welche jeder Wellenlänge im sichtbaren Bereich eine Intensität zuordnet. in Energiesparlampenspektren die Emissionslinien von Quecksilber erkennen. Thema Vermessung der Spektren von Energiesparlampen Autoren Steffen Urban, Peter Stinner Fächer Physik, Chemie Zielgruppe Sekundarstufe II Zeitraum 2-5 Stunden Technische Voraussetzungen Rechner mit Internetzugang für die Recherche zum Thema und für die Erstellung und Auswertung der Spektren Software Astroart-Demoversion (kostenfreier Download, siehe Internetadresse), Tabellenkalkulation (bevorzugt MS-Excel) Leuchtstoffröhren sind Gasentladungslampen, in denen Quecksilberatome beim Quecksilberdampfdruck von einigen mikrobar durch Elektronenstoß zum Leuchten angeregt werden. Abb. 1 zeigt vereinfacht das Energieniveau-Schema eines Quecksilberatoms (nach einer Versuchsbeschreibung zum Franck-Hertz-Versuch der Firma NEVA, jetzt ELWE). Die waagerechten Linien repräsentieren Energieniveaus, deren Energie relativ zum Grundzustand in Elektron-Volt (eV) angegeben ist. Die senkrechten Doppelpfeile stehen für mögliche Quantenübergänge ("Elektronensprünge") zwischen diesen Energieniveaus. Die Zahlenwerte geben die Wellenlängen des bei diesen Übergängen emittierten Lichts in Nanometern (nm) an. Die Übergänge, welche die Emission von sichtbarem Licht zur Folge haben, sind entsprechend farbig gekennzeichnet. Die intensivste Linie im Quecksilberspektrum ist jedoch die zum 4,9 eV-Übergang gehörende Linie im ultravioletten Spektralbereich (UV). Damit ihre Energie nicht ungenutzt in die durch Absorption im Glas stattfindende Erwärmung der Lampe verloren geht, kleidet man die Innenseite der Leuchtstoffröhre mit sogenannten Leuchtstoffen aus. Diese können zum Beispiel aus Sulfiden, Silikaten oder Wolframaten bestehen. In den Leuchtstoffen wird das UV-Licht der Wellenlänge 253,7 nm in sichtbares Licht umgewandelt, dessen spektrale Zusammensetzung sich in weiten Grenzen durch die Wahl der Leuchtstoffe an den Verwendungszweck anpassen lässt. Um für das menschliche Auge den Eindruck weißen Lichts zu erzeugen, wird der im Quecksilberspektrum komplett fehlende Rotanteil auf diese Weise erzeugt. Informationen über das zugrunde liegende physikalische Prinzip findet man bei einer Internetrecherche über die Suchbegriffe "Stokes-Shift" oder "Stokesverschiebung". Wikipedia: Stokes-Shift Informationen zur Entdeckung und Beschreibung der Stokesverschiebung auf der Webseite der freien Online-Enzyklopädie Letztlich entsteht im Leuchtstoff aus einem hochenergetischen UV-Photon ein energieärmeres sichtbares Photon. Die entsprechende Differenzenergie verbleibt im Leuchtstoff und erwärmt diesen. Abgesehen von der Elektrodenerwärmung ist das beinahe der gesamte Energieverlust in solchen Lampen. Leuchtstofflampen wandeln fast die Hälfte der aufgenommenen elektrischen Energie in sichtbares Licht um. Bei Glühlampen liegt dieser Anteil unter 10 Prozent (Dieter Meschede: Gerthsen Physik, Springer-Verlag, Berlin und Heidelberg, 2006). Die Darstellung in Abb. 2 dient dem qualitativen Vergleich der Spektren einiger Energiesparlampen und einer Quecksilberlampe. Im Quecksilberspektrum (5) erkennt man die stärksten der im Schema von Abb. 1 markierten sichtbaren Spektrallinien (a bis e). Man findet diese auch in den Spektren 1 bis 4. Alle zusätzlichen Linien und Farbbereiche in diesen Spektren sind Ergebnisse der Umwandlung des UV-Lichts in sichtbares Licht, die in den Leuchtstoffen stattfindet. Das oberste Spektrum (1) gehört zu einer konventionellen Leuchtstoffröhre langer Bauform, wie sie bereits seit vielen Jahrzehnten verwendet wird. Das zweite und das dritte Spektrum stammt jeweils von einem modernen "Billigprodukt" (Spektrum 2: IKEA-Modell GA607N1961 0844, 7W; Spektrum 3: Baumarktprodukt DekoLight, 7W), das vierte dagegen von einem Markenprodukt (Philips Genie CDL 695, 18W). Der Vergleich von Spektrum 1 mit den Spektren 2 bis 4 zeigt unmittelbar, dass Energiesparlampen keine Erfindung des 21. Jahrhunderts sind, denn unter dem Namen "Leuchtstoffröhren" gibt es sie schon seit Jahrzehnten. Deshalb erscheint es gerechtfertigt, die Begriffe Leuchtstofflampe beziehungsweise -röhre und Energiesparlampe synonym zu gebrauchen. Einsatz des DADOS-Spaltspektrographen Die dieser Unterrichtseinheit zugrunde liegenden Spektren einiger Energiesparlampen und zweier Kalibrierlichtquellen (Wasserstoff- und Quecksilberspektrallampen) wurden mit einem DADOS-Spaltspektrograph der Firma Baader-Planetarium an einem f = 1.000 Millimeter-Spiegelteleobjektiv aufgenommen. Wer sich für die Technik der Gewinnung von Spektren als Bilddateien interessiert, findet ausführliche Informationen dazu in der Unterrichtseinheit Spektroskopie an galaktischen Gasnebeln . Quantitative Auswertung Nachdem das zu bearbeitende Spektrum einer Energiesparlampe (Abb. 3 und Bilddateien der Downloadmaterialien, siehe unten) aufgenommen wurde, stellt sich die Frage, welche Lichtwellenlänge von welchem Ort im Bild des Spektrums repräsentiert wird. Zur Beantwortung dieser Frage muss der Spektrograph kalibriert (geeicht) werden. Dabei kommt das in der Datei "esl_spektroskopie_anleitung.pdf" (siehe unten) beschriebene Verfahren zur Anwendung. Geeignete Kalibrierlampen Als sogenannte Kalibrierlichtquellen verwendet man externe Lichtquellen, die hinreichend viele und möglichst genau bekannte Wellenlängen emittieren, die über das gesamte sichtbare Spektrum verteilt sind. Kombiniert man die Spektren einer Quecksilberdampflampe und einer Wasserstofflampe ("Balmerlampe"), dann sind diese Anforderungen gut erfüllt. Beim Spektrum der Balmerlampe (Abb. 4) fällt auf, dass dem Hintergrund des Wasserstoff-Molekülspektrums das Linienspektrum des atomaren Wasserstoffs überlagert ist. Die Linien H-alpha, H-beta und H-gamma des letzteren sind leicht zu identifizieren und zuzuordnen. Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Einen für diese Unterrichtseinheit relevanten Artikel stellen wir hier kurz vor. Der vollständige Beitrag steht als PDF-Download zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Diskussion um die Energiesparlampe - Quecksilber und schlechtes Licht Aufgrund der Stromsparpolitik der Europäischen Union werden Glühlampen seit dem 1. September 2009 sukzessive aus dem Verkauf genommen. Ab Mitte 2012 dürfen dann keine Glühlampen mehr verkauft werden. Die nun zum Einsatz kommenden Energiesparlampen finden jedoch bisher wenig Akzeptanz in der Bevölkerung. Sie enthalten giftiges elementares Quecksilber und müssen deshalb als Sondermüll entsorgt werden. Der meistgenannte Kritikpunkt ist aber die schlechte Lichtqualität der neuen Lampen und ihre in zahlreichen Presseberichten unterstellte Gesundheitsgefährdung. Um dies genauer betrachten zu können, berschreibt der Artikel zunächst der Aufbau und die Funktionsweise von Energiesparlampen. Die Entstehung der Emissionsspektren wird detailliert dargestellt. Eine Alternative? - Light Emitting Diodes (LEDs) Lampen auf Festkörperbasis, nämlich Leuchtdioden (Light Emitting Diodes, LEDs), weisen bereits heute eine höhere Effizienz als Energiesparlampen auf. Dies sollte sich in Zukunft noch deutlich steigern lassen. Vor- und Nachteile organischer und anorganischer LEDs sowie die Funktionsweise anorganischer LEDs werden vorgestellt. Fazit Der zukünftige Einsatz von Lampen auf LED-Basis kann zu einer nicht unbeträchtlichen Einsparung von Energie führen. Dabei sind in erster Linie Chemikerinnen und Chemiker gefragt, neue Leuchtstoffe zu entwickeln, die einerseits sehr effizient emittieren und andererseits die gewünschten optischen Eigenschaften bezüglich Absorption und Emission besitzen. Zu diesem Zweck muss auch noch Grundlagenforschung durchgeführt werden, da die Struktur-Lumineszenz-Beziehungen in vielen Fällen nicht ausreichend geklärt ist, um gezielt neue Leuchtstoffe für unterschiedliche Anwendungen zu finden.

  • Physik / Astronomie
  • Sekundarstufe II

Radiowellen: Kommunikation über Radio

Unterrichtseinheit

In dieser Unterrichtseinheit untersuchen die Schülerinnen und Schüler, wie Radiowellen in Kommunikationssystemen verwendet werden und verstehen, wie diese im Rahmen eines CanSat Projekts eingesetzt werden können. Zuvor müssen sie allerdings die unterschiedlichen Arten und wichtigsten Eigenschaften von Radiowellen sowie deren Verortung im elektromagnetischen Spektrum begreifen.In den sechs Übungen dieser Lerneinheit erfahren die Lernenden, welche unterschiedlichen Arten von Radiowellen es gibt und welche unterschiedlichen Funktionen und Anwendungen diese haben. Die Schülerinnen und Schüler verstehen, wie Alltagsgeräte wie Smartphones, Router und Satelliten, mithilfe der Datenübertragung von Radiowellen, funktionieren. Zuvor wird in die wichtigsten Eigenschaften von Radiowellen sowie deren Verortung im elektromagnetischen Spektrum eingeführt. Um den Lernenden die Inhalte anschaulicher zu machen, wird im Rahmen eines einfach gehaltenen Projekts der praktische Ablauf dargestellt. Die Unterrichtseinheit wurde im Rahmen der Projekte ESERO Germany und "Columbus Eye - Live-Bilder von der ISS im Schulunterricht" an der Ruhr-Universität Bochum entwickelt. Radiowellen sind für die Funktion von vielen Alltagsgeräten notwendig. Sie sind ein Mittel, um Informationen übertragen zu können und zu verarbeiten. Diese Übungsreihe veranschaulicht den Lernenden, wie Radiowellen in Kommunikationssystemen verwendet werden. Als praktisches Beispiel dient hierfür das CanSat Projekt. Bei dem CanSat handelt es sich um einen "Satelliten" in der Größe einer Steckdose, der mehrere hundert Meter in die Luft geschossen wird und dann an einem Fallschirm zu Boden sinkt. Alle Daten, die für das wissenschaftliche Experiment notwendig sind, werden mittels Radiowellen von CanSat an die Bodenkontrollstation geschickt. Des Weiteren wird von den Schülerinnen und Schülern durch einen eigens geschriebenen Quelltext die Radiokommunikation erprobt und demonstriert. Altersgruppe: 14 bis 20 Jahre Unterrichtsfach: Naturwissenschaften (Physik, Elektronik, Technik) Schwierigkeitsgrad: Mittel Benötigte Zeit: 3 Unterrichtsstunden Die Schülerinnen und Schüler erwerben Grundlagenwissen über Wellen und das elektromagnetische Spektrum. verstehen, wie Modulation funktioniert und warum sie für die Übertragung von Informationen notwendig ist. verstehen die Zusammenhänge zwischen Frequenz, Wellenlänge und Funkwellenausbreitung. erlernen die für einen Kommunikationsprozess notwendigen Elemente zu identifizieren. sind in der Lage, zwischen unterschiedlichen Kommunikationsprotokollen zu unterscheiden. programmieren ihre eigenen Radiomodule. bauen eine eigene Antenne und empfangen mit ihrer Hilfe Informationen.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Versuche mit dem Eigenbau-Gitterspektrometer

Unterrichtseinheit

Mit einfachen Mitteln bauen Schülerinnen und Schüler in nur 60 Minuten ein Gitterspektrometer. Spektren verschiedener Lichtquellen können fotografiert und mithilfe eines Kalibrierungsspektrums und eines Grafikprogramms auch quantitativ ausgewertet werden.Die Zerlegung des Lichtes in seine Bestandteile ist für viele Schülerinnen und Schüler ein geläufiges Phänomen. Meistens ist es aufgrund der Dispersion am Prisma bekannt. Allerdings haben die wenigsten Schülerinnen und Schüler ein Prisma zu Hause. Ebenfalls vertraut ist die Zerlegung des Lichtes mithilfe der Reflektion an einer CD. Allerdings bleibt es dabei nur bei einer qualitativen Betrachtung des Lichtes. Mit dem hier vorgestellten Selbstbau-Gitterspektrometer sind quantitative Messungen möglich, die eine Genauigkeit von einigen Nanometern aufweisen.Die Spektroskopie ist nicht nur eine der wichtigsten Untersuchungsmethoden in der instrumentellen Analytik, sondern zeichnet sich auch durch ihren hohen ästhetischen Reiz aus. Sie bietet zudem die Möglichkeit, im Rahmen des Physikunterrichts einen Bogen zur Astronomie zu schlagen, von der ebenfalls eine starke Faszination ausgeht. So kann zum Beispiel untersucht werden, was das Licht von Sternen oder galaktischen Gasnebeln über die Zusammensetzung astronomischer Objekte verrät (siehe Unterrichtseinheit Spektroskopie an galaktischen Gasnebeln ). Bau und Einsatz des Spektrometers im Unterricht Neben der Kopiervorlage mit Bauanleitung finden Sie hier wichtige Sicherheitshinweise und Tipps zu den Beobachtungsobjekten sowie zur Auswertung der Spektren. Die Schülerinnen und Schüler sollen mit einfachen Mitteln nach einer Bastelanleitung ein einfaches Spektrometer bauen. die Spektren verschiedener Lichtquellen qualitativ untersuchen. das Spektrometer kalibrieren, die Spektren künstlicher Lichtquellen fotografieren (Digitalkamera) und am Rechner quantitativ auswerten. Thema Versuche mit dem Eigenbau-Gitterspektrometer Autor Heinrich Kuypers Fach Physik Zielgruppe Mittelstufe, Sekundarstufe II Zeitraum etwa 1 Zeitstunde für den Bau des Spektrometers; die quantitative Auswertung eines Spektrums (Digitalfoto) am Rechner nimmt nach der Einarbeitung etwa 15-20 Minuten in Anspruch. Technische Voraussetzungen Durchlicht-Beugungsgitter (Gitterweite: 1.111 nm = 900 Linien pro mm; Träger: 0,05 mm Acetatfolie; Quelle: astromedia.de); für quantitative Auswertungen: Digitalkamera und Bildbearbeitungsprogramm (zum Beispiel MS Paint) Das Gitterspektrometer kann in der Mittelstufe der Sekundarstufe I sowie in der Oberstufe eingesetzt werden. Die Konstruktion nimmt etwas mehr als eine Einzelstunde in Anspruch. Man benötigt dafür folgende Materialien: Die Kopiervorlage (spektrometer_bastelvorlage.pdf) sollte auf möglichst schwerem Papier gedruckt werden (200 oder 250 Gramm Papier hat sich bewährt). Sie enthält zugleich die Bauanleitung für das Spektrometer. Das benötigte Gitter kann vom AstroMedia Verlag bezogen werden (siehe "Internetadressen") Außerdem benötigt man einen Holzspieß oder -stab (Mindestlänge 30 Zentimeter). Holzspieße erhält man im Baumarkt als "Pflanzspieße" in der Gartenabteilung oder als Schaschlikspieße in Supermärkten. Für die Fixierungen hat sich Klebefilm bewährt. Flüssigkleber hat den Nachteil, dass er bei unvorsichtiger Anwendung auf das Gitter gelangt und es unbrauchbar macht. Mit dem Spektrometer lassen sich im Unterricht sofort einige Stoffe anhand ihres Spektrums identifizieren. Verschiedene Gasentladungslampen können dazu an verschieden Plätzen im Unterrichtsraum aufbaut werden. Die Schülerinnen und Schüler können dann von Tisch zu Tisch wandern und mithilfe des Spektrometers und einer Spektraltafel, wie sie in vielen Physikbüchern auf den letzten Seiten zu finden ist, die Stoffe identifizieren. Weitere Bebachtungsziele können den Lernenden als Hausaufgabe vorgegeben werden: Glühlampen Die Glühlampe zeigt ein kontinuierliches Spektrum. Wichtig dabei ist der insgesamt bebachtbare Spektralbereich. Dioden Die Emissionslinien dieser in der Regel monochromatischen Lichtquellen sind nicht scharf, sondern besitzen eine breite Streuung. Energiesparlampen Bei der Beobachtung von Energiesparlampen lässt sich der Quecksilber-Gehalt nachweisen. Straßenbeleuchtung Häufig besitzen die Straßenlampen Natriumlinien. Mond Der Vollmond gibt (gefahrlos) das Sonnenspektrum wieder (Frauenhofersche Linien sind bei der in der Bastelvorlage vorgegebenen Spaltbreite nicht zu erkennen). Keine Sonne, keine Laser! Weisen Sie die Schülerinnen und Schüler nachdrücklich darauf hin, dass die Sonne nicht beobachtet werden darf (Zerstörung der Netzhaut). Ebenso scheidet die Untersuchung von Lasern, zum Beispiel Laserpointern, aus. Auge und Holzspieß Beim Betrachten der Spektren mit dem Auge können sonst harmlose und ungewollte kleine "Schubsereien" unter den Lernenden gefährlich werden, da sich ein Ende des Holzstabs sehr nah am Auge beobachtender Schülerinnen und Schüler befindet. Weisen Sie die Klasse oder den Kurs ausdrücklich darauf hin. Verletzungsmöglichkeiten lassen sich hier zum Beispiel durch das Aufsetzen von Weinkorken auf die Enden der Holzspieße wirksam ausschließen. Die Skala der Kopiervorlage kann nach Belieben noch genauer unterteilt werden, falls dazu die Notwendigkeit besteht. Allerdings liegt die Messunsicherheit der Konstruktion bei über fünf Nanometern. Die Lage der Markierungen ( d ) für eine genauere Unterteilung der Wellenlängen (lambda) lässt sich mit der Formel berechnen. Dabei ist g die Gitterkonstante (1,11 Nanometer) und a der Abstand zwischen Gitter und Spalt (27 Zentimeter). Möchte man diese Änderung unter MS Word durchführen, muss man die Zeichenraster von Word ausschalten oder beim Einzeichnen der Markierungslinie die Alt-Taste gedrückt halten. Die farbige Aufteilung des Lichtes wird immer durch Linien dargestellt, deshalb spricht man stets von Spektrallinien. Allerdings wird häufig vergessen, woher sie eigentlich stammen. Die Linien sind nur die Beugungsfigur des Spaltes. Dies wird sofort anschaulich klar, wenn man den Spalt durch eine andere geometrische Figur ersetzt. Dies lässt sich sehr leicht durch einen Motivstanzer verdeutlichen. Anstelle eines Spalts wird mit einem Motivstanzer (erhältlich in Bastelgeschäften) eine Figur, beispielsweise ein Weihnachtsbaum, aus der Pappvorlage gestanzt. Dies führt zum Beispiel bei einer Energiesparlampe - abhängig von den emittierten Wellenlängen - zu fünf bunten Tannenbäumen. Eine quantitative Auswertung von Digitalfotos erfordert "Laborbedingungen", da Kamera und Gitterspektrometer immer in gleicher Position zu einander gehalten werden müssen. Für die Eichung der Messanordnung wird die Digitalkamera unmittelbar hinter dem Gitter positioniert. Auf dem Suchermonitor erscheint das Spektrum der Kalibrierungslampe. Die Kamera wird dann vorsichtig so weit verschoben, bis die bekannten Spektrallinien des Referenzspektrums mit den richtigen Markierungslinien der Wellenlänge übereinstimmen. Damit ist das Spektrometer kalibriert. Anschließend kann jede weitere Lichtquelle vor dem Spalt platziert und deren Spektrum aufgenommen werden. Die Fotos werden dann mit einem Grafikprogramm, zum Beispiel MS Paint, geöffnet. Dort kann die Position der bekannten Wellenlänge vom Spalt aus gemessen und in Pixeln ausgedrückt werden. Anschließend wird ein Bild mit einem unbekannten Spektrum überlagert. Die Pixeldifferenz zu den bekannten Linien wird dann in Wellenlängen umgerechnet.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Unsichtbares Licht

Unterrichtseinheit

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Ausgehend von dem Einstiegsvideo "Licht und Optik II: Was ist Licht? – Das elektromagnetische Spektrum (2019)" werden im ersten Arbeitsblatt schwerpunktmäßig die dem sichtbaren Bereich direkt benachbarten Wellenlängenabschnitte thematisiert, nämlich die Infrarotstrahlung und die UV-Strahlung. Die Lernenden erfahren, dass der Kamerachip ihres Smartphones in der Lage ist, bestimmte IR-Strahlung abzubilden, und lernen die vielfältigen Anwendungen von Infrarotbildern kennen. Bei der UV-Strahlung stehen die schädigenden Wirkungen auf die Haut sowie die Anwendungen der weichen UV-Strahlung (Schwarzlicht) im Vordergrund. Im zweiten Arbeitsblatt wird die Planck'sche Strahlungskurve thematisiert. Eine Computersimulation stellt diese Kurve in Abhängigkeit von der Temperatur des strahlenden Körpers dar und ermöglicht einen anschaulichen und schüleraktivierenden Zugang zum Thema. Die Lernenden erkennen, dass ein glühender, lichtaussendender Körper nur einen Teil seiner Strahlung als sichtbares Licht abgibt. Dieser Anteil hängt von der Temperatur des Strahlers ab. Im dritten Arbeitsblatt geht es dann um alle sieben Strahlungskategorien, die in dem Video erwähnt werden. Diese verschiedenen Wellenbereiche des elektromagnetischen Spektrums spielen in der Astronomie eine extrem wichtige Rolle, denn sie enthalten Informationen über die energetischen Prozesse, die in den Weiten des Universums diese Strahlung freigesetzt hat. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen, um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier Die Forschung der Nobelpreisträger im Unterricht . Das Thema "unsichtbares Licht" im Unterricht Die Unterrichtseinheit macht die Lernenden mit der Tatsache vertraut, dass der Wellenlängenumfang des elektromagnetischen Spektrums wesentlich größer ist als der des sichtbaren Lichts. Dabei unterscheiden sich die unsichtbaren Spektralbereiche in ihrer physikalischen Natur überhaupt nicht von den sichtbaren. Die Recherchen zur Entstehung und zu Anwendungen des unsichtbaren Lichts berühren viele Gebiete der Physik und Astronomie, was dem Thema eine kontextorientierte und stark motivierende Komponente verleiht. Vorkenntnisse Für die Durchführung dieser Unterrichtseinheit zum unsichtbaren Licht sollten die Grundlagen der Strahlenoptik bereits eingeführt worden sein. Außerdem sollte die spektrale Zerlegung von Licht durch Prismen bereits im Unterricht thematisiert worden sein. Didaktische und methodische Analyse Dass die Sonne außer dem sichtbaren Licht auch Wärmestrahlung und UV-Strahlung abgibt, sollte allgemein bekannt sein. Die Frage, welcher Natur diese Strahlungsarten sind und wie man sich dieser Fragestellung experimentell nähert, ist Gegenstand des ersten Arbeitsblattes. Der Nachweis der Infrarotstrahlung durch den sogenannten Herschel-Versuch beziehungsweise der Nachweis der UV-Strahlung mithilfe fluoreszierender Stoffe lässt sich im Unterricht experimentell durchaus durchführen. Sollten Sie in Ihrer Schule die Zeit und das entsprechende Experimentiermaterial haben, ist es ratsam, diese Möglichkeiten auf jeden Fall zu nutzen. Die Versuche wären dann eine gute Ergänzung zu den historischen Zugängen, die im Arbeitsblatt in Form von Recherche-Aufträgen zugänglich gemacht werden sollen. Ein wichtiges Teillernziel des Arbeitsblattes ist die Erkenntnis, dass die infrarote und die ultraviolette Strahlung von gleicher physikalischer Natur sind wie das sichtbare Licht und sich daher im Spektrum links und rechts vom sichtbaren Teil wiederfinden. Wie ausgeprägt (also wie intensiv) diese Strahlungsanteile bei glühenden Körpern sind, wird im zweiten Arbeitsblatt thematisiert. Die Computersimulation zur Planck-Kurve stellt eine gute Möglichkeit dar, einige wesentliche Aspekte dieser Thematik auf anschaulichem Niveau zu verstehen, ohne auf die Bezüge zur Quantenphysik und weiterführende Fragestellungen eingehen zu müssen. So lässt sich beispielsweise an der Strahlungskurve einer Glühlampe mit einem Blick erkennen, wie wenig der abgegebenen Strahlung in sichtbares Licht verwandelt wird und dass stattdessen der Löwenanteil der Energie in Form von Wärmestrahlung ausgesendet wird. Die seinerzeit auf europäischer Ebene getroffene Entscheidung, die Glühlampe nach und nach aus dem Verkehr zu ziehen, beruht auf einer eindeutigen physikalischen Erkenntnis – auch solche Aspekte sollten im Physik-Unterricht an passender Stelle thematisiert werden. Dass der Spektralbereich der elektromagnetischen Strahlung auf der Wellenlängenskala nach links und nach rechts noch wesentlich weiter ausdehnbar ist, wird im Einstiegsvideo angesprochen und im dritten Arbeitsblatt im Kontext astrophysikalischer Forschung thematisiert. Die Recherche zu den verschiedenen Spektralbereichen kann allerdings leicht ausufern, angesichts der großen Fülle an Informationen, die das Internet zur Verfügung stellt. Daher sollten Sie bereits im Vorfeld die Lernenden darauf hinweisen, nur einige wenige Aspekte, nämlich solche, die den Lernenden besonders wichtig und interessant erscheinen, aufzunehmen. Im Rahmen der anschließenden Sicherungsphase im Plenum sollten Sie dann die unterschiedlichen Ergebnisse sammeln und inhaltlich strukturieren. Es ist klar, dass bei dem gesamten Thema "unsichtbares Licht" Begriffe Verwendung finden, die eigentlich zur Wellenoptik gehören und in der Regel kaum oder gar nicht im Physik-Unterricht der Sekundarstufe I auftreten. Gemeint sind Begriffe wie Wellenlänge, Frequenz oder Energie von Licht und anderer Strahlung. Allerdings erscheinen diese Begriff hier eher in einem anschaulichen Kontext und dürften mit ein wenig Hilfestellung nicht zu Verständnisproblemen führen. Fachkompetenz Die Schülerinnen und Schüler wenden Kenntnisse aus dem Themenbereich Optik im Physik-Unterricht der Mittelstufe an. lernen das elektromagnetische Spektrum in seiner Gesamtheit kennen. lernen Anwendungsgebiete der unterschiedlichen Strahlungsarten kennen. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet und sammeln, sortieren und bewerten Informationen. binden Informationen eines Erklärvideos in ihre Lösungen ein. Sozialkompetenz Die Schülerinnen und Schüler bearbeiten Aufgaben in Partnerarbeit. tauschen Informationen und Recherche-Ergebnisse untereinander aus. diskutieren und hinterfragen Lösungen untereinander und im Plenum .

  • Physik / Astronomie / Englisch
  • Sekundarstufe I

Materialsammlung Optik

Unterrichtseinheit

Auf dieser Seite haben wir Informationen und Anregungen für Ihren Astronomie- und Physik-Unterricht zum Thema Optik für Sie zusammengestellt. Die Optik (vom griech. opticos – "das Sehen betreffend") beschäftigt sich als Teilgebiet der Physik mit dem aus Photonen bestehenden Licht. Photonen werden gemäß dem Welle-Teilchen-Dualismus auch als Lichtteilchen bezeichnet, die je nach Beobachtung Teilcheneigenschaften oder Welleneigenschaften aufweisen können – man unterscheidet deshalb zwischen der geometrischen Optik und der Wellenoptik . Geometrische Optik In der geometrischen Optik wird Licht durch idealisierte (geradlinig gedachte) Lichtstrahlen angenähert. Dabei lässt sich der Weg des Lichtes (zum Beispiel durch optische Instrumente wie Lupe, Mikroskop, Teleskop, Brillen oder auch durch die Reflexion des Lichtes an einem Spiegel) durch Verfolgen des Strahlenverlaufes konstruieren; man spricht in diesem Zusammenhang auch von Strahlenoptik . Die dazu notwendigen Abbildungsgleichungen oder Linsengleichungen ermöglichen es, zum Beispiel den Brennpunkt einer optischen Linse zu bestimmen. Analog dazu kann auch die Brechung des Lichtes – beispielsweise durch eine Prisma – und die Aufspaltung in seine sichtbaren Anteile von violett bis rot ( Regenbogen-Farben ) mittels des Snelliu'schen Brechungsgesetzes beschrieben werden. Wellenoptik Die Wellenoptik beschäftigt sich mit der Wellennatur des Lichtes – dabei werde diejenigen Phänomene beschrieben, die durch die geometrische Optik nicht erklärt werden können. Bedeutende Elemente der Wellenoptik sind die Interferenz von sich überlagernden Wellenfronten, die Beugung beim Durchgang von Licht durch sehr kleine Spalten oder Kanten oder die Streuung von Licht an kleinen Partikeln, die in einem Volumen verteilt sind, die das Licht gerade durchdringt. Zudem kann die Wellenoptik auch Effekte beschreiben, die von der Wellenlänge des Lichtes bestimmt sind – man spricht in diesem Zusammenhang auch von Dispersion. Die häufig gestellte Frage "Warum ist der Himmel blau?" kann in diesem Zusammenhang erklärt werden. Oberflächlich auftretende Phänomene wie die Abgabe von Licht ( Lichtemission ) und die Aufnahme von Licht ( Lichtabsorption ) werden weitestgehend der Atom- und Quantenphysik (auch unter dem Begriff Quantenoptik ) zugeordnet. Die für den Unterricht an Schulen notwendigen Gesetze der Optik betreffen hingegen in erster Linie die Ausbreitung des Lichtes und sein Verhalten beim Durchqueren durchsichtiger Körper . Die hier vorgestellte Lerneinheit erläutert die Funktionsweise eines Satelliten, der das von der Erdoberfläche reflektierte Licht zur Bildaufnahme nutzt und dabei auch Wellenlängen jenseits des sichtbaren Lichts einbezieht. Zusätzlich zum Verständnis der physikalischen Inhalte lernen die Schülerinnen und Schüler auf diese Weise auch Aspekte der Fernerkundung kennen. Eine "Vermittlerfigur" in Form eines virtuellen Professors begleitet die Lernenden bei der Erforschung des elektromagnetischen Spektrums. Das Projekt FIS des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Schülerinnen und Schüler sollen Reflexionseigenschaften unterschiedlicher Objekte kennen lernen. die Begriffe "Reflexion" und "Absorption" erklären und unterscheiden können. den Zusammenhang zwischen Objektfarbe und Reflexionseigenschaften erklären können. das elektromagnetische Spektrum kennen und verstehen, dass es neben dem sichtbaren Licht noch andere Wellenlängenbereiche gibt. die Grundlagen der Umwandlung der Reflexionswerte in Bildinformationen beschreiben können. die Entstehung von Falschfarbenbildern beschreiben können. Thema Dem Unsichtbaren auf der Spur: was sieht ein Satellit? Autoren Dr. Roland Goetzke, Henryk Hodam, Dr. Kerstin Voß Fach Physik Zielgruppe Klasse 7 Zeitraum 3-4 Stunden Technische Ausstattung Adobe Flash-Player (kostenloser Download) Planung Dem Unsichtbaren auf der Spur Die Unterrichtseinheit "Dem Unsichtbaren auf der Spur" beschäftigt sich mit dem Themenkomplex Optik und geht dabei vor allem auf Reflexion, Absorption und die Wellenlängen des elektromagnetischen Spektrums ein. Durch den Bezug zur Satellitenbildfernerkundung werden diese drei Bereiche miteinander verknüpft und ergänzt. Zunächst soll an einem einfachen Beispiel die Charakterisierung verschiedener Objekte hinsichtlich ihrer unterschiedlichen Reflexions- und Absorptionseigenschaften untersucht werden. Weiterführend soll das gesammelte Wissen auf den Satelliten übertragen werden, so dass die Funktionsweise eines Satelliten verstanden wird. Als dritter Punkt wird dann neben der Betrachtung des sichtbaren Lichts der erweiterte Bereich des elektromagnetischen Spektrums (infrarotes Licht) mit einbezogen. Ziel der Unterrichtseinheit ist es, Zusammenhänge zwischen elektromagnetischem Spektrum, Reflexion, Absorption sowie Aufnahme und Entstehung von Satellitenbildern zu verstehen. Aufbau des Computermoduls Das interaktive Modul gliedert sich in eine Einleitung und zwei darauf aufbauende Bereiche. Inhalte des Computermoduls Hier wird der Aufgabenteil mit den drei Bereichen Einleitung, Satellit und "Unsichtbares" Licht genauer beschrieben. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der didaktischen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Dr. Kerstin Voß ist Akademische Rätin am Geographischen Institut der Universität Bonn und leitet das Projekt "Fernerkundung in Schulen". Sie studierte Geographie an der Universität Bonn und schloss ihre Dissertation 2005 im Bereich Fernerkundung ab. Die Schülerinnen und Schüler sollen mithilfe des Reflexionsgesetzes beschreiben können, wie ein Bild durch Reflexion am ebenen Spiegel entsteht. in der verwendeten GEONExT-Konstruktion die Elemente Einfallswinkel, Ausfallwinkel, Gegenstand und Bild zuordnen können. mithilfe des Arbeitsblattes ein einfaches Konstruktionsverfahren für die Bildentstehung am ebenen Spiegel erarbeiten. die Ergebnisse mit einem Bildbearbeitungsprogramm, zum Beispiel dem kostenlosen GIMP, dokumentieren. Thema Reflexion am ebenen Spiegel mit GEONExT Autor Dr. Karl Sarnow Fach Physik Zielgruppe Klasse 8 Zeitraum 1 Stunde Voraussetzungen idealerweise pro Schülerin oder Schüler ein Rechner; Internetbrowser, Java Runtime Environment , GEONExT (kostenloser Download aus dem Netz), Bildbearbeitungssoftware (zum Beispiel GIMP) Die Schülerinnen und Schüler können offline oder online mit dem HTML-Arbeitsblatt arbeiten, in das die GEONExT-Applikation eingebettet ist. Voraussetzung ist, dass auf den Rechnern die benötigte Java-Abspielumgebung installiert ist. Falls dies nicht der Fall ist, bleibt das GEONExT-Applet in der Online-Version des Arbeitsblattes (siehe Internetadresse) für Sie unsichtbar. Mithilfe des Screenshots (Abb. 1, Platzhalter bitte anklicken) können sich aber auch (Noch-)Nicht-GEONExTler einen Eindruck von dem Applet machen. Bereits Philosophen der Antike wie Empedokles (494-434 v. Chr.), Aristoteles (384-322 v. Chr.) und Heron von Alexandria (zwischen 200 und 300 v. Chr.), stellten Überlegungen und Mutmaßungen zur Endlichkeit der Lichtgeschwindigkeit an. Johannes Kepler (1571-1630) und René Descartes (1596-1650) hielten die Lichtgeschwindigkeit für unendlich, erst Olaf Christensen Römer (1644-1710) gelang 1676 der Nachweis der Endlichkeit. Heute kann an vielen Schulen mit Demonstrationsexperimenten die immer noch faszinierende Frage nach der Geschwindigkeit des Lichts experimentell untersucht und beantwortet werden. Der Foucaultsche Drehspiegelversuch ist jedoch vorbereitungsaufwändig für die Lehrkraft und enttäuschend im beobachteten Effekt für die Schülerinnen und Schüler. Auf einer Messung der Phasenverschiebung eines modulierten Lichtsignals beruhende Versuche sind für Lernende nicht einfach zu verstehen. Das RCL "Lichtgeschwindigkeit" arbeitet daher mit einem modifizierten Leybold-Versuch nach der auch für Schülerinnen und Schüler der Sekundarstufe I verständlichen Laufzeitmethode von Lichtimpulsen. Darüber hinaus können die Lernenden anhand selbst durchgeführter Messungen die Lichtgeschwindigkeit bestimmen. Die Schülerinnen und Schüler sollen die Bestimmung der Lichtgeschwindigkeit als messtechnisches Problem erkennen. mit dem RCL "Lichtgeschwindigkeit" Messungen nach der Laufzeitmethode durchführen. aus Strecke-Zeit-Messwertpaaren möglichst genau die Lichtgeschwindigkeit bestimmen und den Messfehler abschätzen. sich mit geeigneten Materialien und Kenntnissen aus der geometrischen Optik und Mechanik weitere Bestimmungsmethoden (Olaf Christensen Römer, Hippolyte Fizeau, Jean Bernard Léon Foucault) erarbeiten und vortragen. eine Vorstellung von der Bedeutung der Lichtgeschwindigkeit in der Physik gewinnen. Thema Bestimmung der Lichtgeschwindigkeit Autor Sebastian Gröber Fach Physik Zielgruppe Sekundarstufe I (ab Klasse 10) und II Zeitraum Teil 1 für Sekundarstufe I oder II: 3 Stunden Teil 2 für Sekundarstufe II: 3 Stunden Technische Voraussetzungen Computer mit Internetzugang und Beamer Software Zeichenprogramm (zum Beispiel Paint) zur Auswertung des Oszilloskopbildes, Tabellenkalkulationsprogramm (zum Beispiel Excel) zur Auswertung der Messdaten

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Luther im Religionsunterricht – Arbeitshilfe zum Lutherfilm

Unterrichtseinheit

Die vorliegende Arbeitshilfe liefert unterrichtliche Hinweise zum Einsatz des Lutherfilms von Eric Till aus dem Jahr 2003 und bietet Ansätze zur medienpädagogischen Arbeit.Das Material gliedert sich in eine allgemeine Einführung zur Mediennutzung im Unterricht sowie einer Einführung zum Lutherfilm und dem historischen Kontext. Die einzelnen Kapitel des Films werden beschrieben und um Ideen zum Einsatz im Unterricht ergänzt. Durch vielfältige Fragestellungen können verschiedene Schwerpunkte für den eigenen Unterricht gesetzt werden.Die Fachstelle medien und kommunikation ist eine Einrichtung der Erzdiözese München-Freising. Das Verleihangebot umfasst Filme und Materialien für Religionsunterricht, Katechese und Erwachsenenbildung, wovon ein großer Teil auch als Download unter www.medienzentralen.de zur Verfügung steht. Den zweiten Schwerpunkt der Stelle bildet die medien- und kommunikationspädagogische Arbeit durch Schulungen, Kurse, Vorträge und andere Veranstaltung im Bereich der Erwachsenenbildung und Lehrerfortbildung. Zu den muk-Publikationen Die Schriftenreihe "muk-publikationen", aus der auch das vorliegende Unterrichtsmaterial stammt, widmet sich medienpädagogischen Themen und legt dabei Wert auf ein breites inhaltliches Spektrum, das von der Mediendidaktik bis zu grundsätzlichen Themen reicht. Alle Publikationen stehen unter www.m-u-k.de als Download im PDF-Format zur Verfügung, können aber auch als Druckversionen angefordert werden.

  • Religion / Ethik
  • Sekundarstufe I

Quantenphysik multimedial: Spektrum der Gitarrensaite

Video

In diesem Video wird das Frequenzgemisch untersucht, aus dem sich der Klang einer schwingenden Gitarrensaite zusammensetzt. Die Frage, ob das Spektrum ein eindeutiger Fingerabdruck des verwendeten Musikinstruments ist, lässt sich bereits an einem einfachen Beispiel klären: Einer einzelnen schwingenden Saite, dem sogenannten Monochord. Durch Anzupfen wird die Saite in Schwingung versetzt. Diese können wir aber nicht direkt hören. Nur wenn sich die schwingende Saite in Luft befindet, wird durch die Luftmoleküle die Schwingung als Druck- und Dichteschwankung mit Schallgeschwindigkeit bis zu unserem Ohr weitergetragen. Mit einem Computer können wir den zeitlichen Verlauf der Schallwelle aufnehmen. Aus welchem Gemisch von Frequenzen der Klang der Saite besteht, verrät uns die Fourier-Transformation. Es fällt auf, dass es eine niedrigste Frequenz f0 gibt, den sogenannten Grundton. Weiterhin ergibt sich ein äquidistantes Spektrum, das heißt alle weiteren Amplituden haben doppelte, dreifache, vierfache oder allgemein n-fache Frequenz des Grundtons. Alle diese Obertöne ergeben - zusammen mit dem Grundton - das Spektrum der schwingenden Saite. Das hier vorgestellte Video ist Teil des Projektes "U2: Quantenspiegelungen" vom Institut für Didaktik der Physik der Universität Münster. Mathematisch fundierte Visualisierungen eröffnen Schritt für Schritt einen Zugang zu moderner Atomphysik – vom Wasserstoffatom bis zum Periodensystem der Elemente.

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE