Anzeige

Jetzt für innovative Schulprojekte bewerben!

Jetzt für innovative Schulprojekte bewerben! Deutsches Kinderhilfswerk
Anzeige

Jetzt für innovative Schulprojekte bewerben!

So macht Unterricht Spaß: 3D-drucken, plottern, Kurzvideos erstellen und mehr: "Zukunft Mitgemacht" fördert Schulprojekte mit 1 Million Euro.

Tipp der Redaktion

Reibungselektrizität und elektrische Influenz

Ein aufgeblasener Ballon zieht Papierschnipsel an
Tipp der Redaktion

Reibungselektrizität und elektrische Influenz

An einfachen Beispielen aus dem täglichen Leben beobachten die Lernenden die physikalischen Phänomene "Reibungselektrizität" und "Elektrische Influenz". 

Tipp der Redaktion

Erneuerbare Energien

Handwerker baut Photovoltaik Anlage auf
Tipp der Redaktion

Erneuerbare Energien

In dieser Unterrichtseinheit befassen sich die Lernenden mit dem Thema erneuerbare Energien. Im Mittelpunkt stehen dabei Photovoltaik und Windkraft.

  • Lehrplanthema
  • Schulstufe 2
    zurücksetzen
  • Klassenstufe
  • Schulform
  • Materialtyp 11
    zurücksetzen
  • Quelle 4
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Statik an Stationen

Kopiervorlage

Die Unterrichtsmaterialien zum Thema Statik sind darauf ausgelegt, zentrale Fachinhalte wie Belastungen, Kräfte, stabile Dreiecke und den Schwerpunkt auf spannende und praxisnahe Weise zu vermitteln. Dabei steht der handlungsorientierte Ansatz im Vordergrund, um den Lernenden ein grundlegendes Verständnis für die Materie zu ermöglichen. Die Unterrichtsmaterialien umfassen fünf verschiedene Stationen, die jeweils technische Experimente zur Statik beinhalten. Diese Experimente verdeutlichen anschaulich die theoretischen Prinzipien und deren Anwendung in der realen Technik. Durch die praktische Auseinandersetzung mit den Modellen und Materialien wird ein direkter Bezug zur technischen Praxis hergestellt, was das Lernen interessanter und nachhaltiger macht. Der Aufbau der Stationsarbeit fördert zudem ein differenziertes Arbeiten, indem er den Schülerinnen und Schülern die Möglichkeit bietet, individuell oder in Kleingruppen zu arbeiten und sich mit den spezifischen Aspekten der Thematik auseinanderzusetzen. Die Ausarbeitung enthält fünf Stationen: 1. Kräfte an Bauwerken: Diese Station beleuchtet die verschiedenen Kräfte, die auf Bauwerke einwirken. Dabei wird thematisiert, wie äußere Einflüsse und innere Spannungen die Stabilität und Sicherheit von Bauwerken beeinflussen. 2. Belastungen eines Trägers: Hier wird konkretisiert, wie Druck- und Zugkräfte auf einen einzelnen Träger wirken. Die Lernenden untersuchen, wie diese Belastungen die Struktur und Belastbarkeit des Trägers beeinflussen. 3. Dreiecksverbund: In dieser Station wird die Bedeutung stabiler Dreiecke für Konstruktionen hervorgehoben. Die Lernenden erfahren, wie durch den Dreiecksverbund feste Verbindungen hergestellt werden können und vergleichen experimentell Dreieck und Viereck. Abschließend wird die Frage geklärt, warum Dreiecke stabil sind. 4. Profile: Die Station zeigt, wie Profile zur Stabilisierung von Strukturen beitragen und gleichzeitig Material einsparen können. Es wird untersucht, wie verschiedene Profilformen die Festigkeit und Effizienz von Bauteilen beeinflussen. Die Lernenden stellen mit den Materialien verschiedene Profile her und untersuchen deren Stabilität. Abschließend suchen sie nach Anwendungen von Profilen in der Umgebung. 5. Schwerpunkt: Hier wird die Bedeutung des Schwerpunkts für die Statik von Artefakten behandelt. Die Schülerinnen und Schüler lernen, den Schwerpunkt von Gegenständen zu bestimmen und erarbeiten, wie die Lage des Schwerpunkts die Stabilität und das Gleichgewicht von Bauwerken bestimmt. Die Bearbeitung dieser Stationen ist gut geeignet, um ein fachliches Fundament für ein anschließendes größeres technisches Projekt zu legen. Ein solches könnte beispielsweise der Bau einer Modellbrücke sein, bei dem die erworbenen Kenntnisse und Fähigkeiten praxisnah angewendet und vertieft werden. Durch diese strukturierte Vorgehensweise wird den Lernenden ein Verständnis der statischen Prinzipien vermittelt, welches sie in zukünftigen Aufgaben anwenden können. Eine Materialliste kann im Downloadbereich heruntergeladen werden. Fachkompetenz Die Schülerinnen und Schüler verstehen Grundprinzipien der Statik. finden hierzu Anwendungen in der realen Technik. verstehen technische Probleme und deren Lösungen. Medienkompetenz Die Schülerinnen und Schüler suchen relevante Informationen im Internet. experimentieren mit Modellen und Materialien. dokumentieren und bewerten die Experimente. Sozialkompetenz Die Schülerinnen und Schüler arbeiten gemeinsam in Kleingruppen. experimentieren weitestgehend selbstständig und eigenverantwortlich.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Einen eigenen Handtuchhalter bauen

Unterrichtseinheit

In der Unterrichtseinheit "Einen eigenen Handtuchhalter bauen" möchte die Hauptfigur Ayla aus einer nicht mehr benötigten Duschvorhangstange einen eigenen Handtuchhalter für das heimische Badezimmer bauen. Eine SHK-Anlagenmechanikerin hilft ihr dabei. Für die passende Materialauswahl erkunden die Schülerinnen und Schüler die verschiedenen Eigenschaften von Edelstahl, Aluminium, Kunststoff und verchromtem Normalstahl. Sie berechnen die passende Rohrlänge, lernen die Montage-Schritte mit Fachvokabular kennen, wählen Bauteile mittels technischer Zeichnungen aus und wenden das Gelernte schließlich praktisch an. Die Einheit bietet sich aufgrund ihrer mathematischen, physikalischen und werktechnischen Eigenschaften für den fächerübergreifenden Werk-Unterricht und für Projektwochen an. Die Unterrichtseinheit schlägt den Bogen von der Theorie hin zur praktischen Arbeit im Unterricht. Sie startet mit einer Lebenssituation der Identifikationsfigur Ayla, die mit ihren Eltern und Geschwistern in einer Wohnung lebt. Da das Bad sehr alt ist, wird es von einer SHK-Fachfirma saniert. Eine alte Duschstange soll dabei entsorgt werden, doch Ayla hat eine bessere, kreative Idee: Sie möchte daraus einen Handtuchhalter bauen. Zusammen mit der SHK-Anlagenmechanikerin begibt sie sich an die Arbeit. Die Schülerinnen und Schüler stellen dabei zunächst eigene Überlegungen zu den Materialanforderungen für den Handtuchhalter in einem Feuchtraum an. Es folgt eine Recherche möglicher geeigneter Werkstoffe und deren Eigenschaften. Hierbei geht es unter anderem um Kriterien wie Aufbau der Metalle, Legierungen, Verformbarkeit, Zerspanbarkeit, Festigkeit, Korrosionsbeständigkeit usw. Im zweiten Schritt geht die Unterrichtseinheit auf die für das konkrete Beispiel notwendige Planungs- und Berechnungsarbeit ein. Hierbei werden auch die Montagetechnik sowie das Befestigungsmaterial und die Werkezuge thematisiert und die Arbeitsschritte aufgezeigt. Dazu gehören unter anderem Trennen (Sägen, Bohren) und Fügen (Schrauben). Die Schülerinnen und Schüler haben anschließend die Möglichkeit, die Arbeit praktisch auszuführen und einen eigenen Handtuchhalter zu bauen. Im letzten Schritt setzen sich die Schülerinnen und Schüler mit einer technischen Zeichnung auseinander, die bei der richtigen Bauteilbeschaffung von Flanschen unterstützt. Erarbeitet werden die in technischen Zeichnungen üblicherweise verwendeten Elemente sowie deren Fachbezeichnungen. Zudem vervollständigen die Schülerinnen und Schüler die Zeichnung durch Einsetzen selbst ermittelter Maßangaben. Die Unterrichtseinheit ermöglicht den Schülerinnen und Schülern einen indirekten Einblick in die vielfältigen Aufgaben des SHK-Handwerks, indem sie selbst einen eigenen Handtuchhalter für das heimische Badezimmer bauen. Sie zeigt, dass handwerkliches Können und Fachwissen dazu befähigen, auch aus alten Materialien kreativ etwas Neues zu erschaffen. Ein hohes Maß an Paar- beziehungsweise Kleingruppenarbeit ermöglicht selbstständiges Recherchieren, das immer wieder durch Präsentationen und/oder Hinleitungen eingefasst wird. Bei maximal möglicher Selbstständigkeit der Schülerinnen und Schüler hat die Lehrkraft somit immer die Möglichkeit, nachzusteuern. Darüber hinaus trägt die Unterrichtseinheit auch praktische Fertigkeiten aus dem handwerklichen Alltag in den Unterricht. Eine Zuordnungsaufgabe klärt vorab die Reihenfolge der anstehenden Schritte zur Montage eines Handtuchhalters. Schülerinnen und Schüler dürfen dann selbst praktisch tätig werden. Dies gibt eher praktisch veranlagten Schülerinnen und Schülern die Möglichkeit, ihre Fähigkeiten zu zeigen. Für die praktische Umsetzungsphase benötigen die Schülerinnen und Schüler mehrere Unterrichtsstunden, sodass sich dieses Unterrichtsmaterial hervorragend für eine Projektarbeit oder -woche anbietet. Vorkenntnisse zu technischen Zeichnungen sind dabei vorteilhaft, aber nicht zwingend notwendig. Je nach Vorwissen brauchen die Lerngruppen für diese Unterrichtseinheit mindestens sieben Unterrichtsstunden oder entsprechend mehr. Die Lehrkraft ist dafür verantwortlich, die Herstellung eines eigenen Handtuchhalters für zuhause, die Schule oder einen anderen Ort entsprechend zu organisieren. Fachkompetenz Die Schülerinnen und Schüler lernen unterschiedliche Metalle und ihre Eigenschaften kennen. erfahren Details zur Montage von Metallrohren. üben das Bearbeiten (= Trennen) von Metall sowie die zugehörigen Arbeitsschritte. arbeiten mit technischen Zeichnungen und erlernen deren Grundaufbau und -Systematik. Berechnen die passende Rohrlänge. Medienkompetenz Die Schülerinnen und Schüler recherchieren Sachinformationen im Netz. Sozialkompetenz Die Schülerinnen und Schüler üben das Arbeiten in Zweierteams und Kleingruppen. behalten bei praktischen Arbeiten die eigene Sicherheit und die der Mitschülerinnen und Mitschüler im Auge. wertschätzen die handwerkliche Arbeit.

  • Technik
  • Sekundarstufe I

Nachhaltigkeit im Kfz-Gewerbe

Fachartikel

Dieser Fachartikel informiert über die Rolle der Nachhaltigkeit im Kraftfahrzeug-Gewerbe. Dabei wird auf den Produktlebenszyklus eines Kraftfahrzeuges geblickt: von der Rohstoffgewinnung und dem Materialeinkauf bis zur Produktion, den Recycling- und Instandhaltungsprozessen. Ein wachsendes Umweltbewusstsein zeigt sich in der Gesellschaft und damit auch im Kfz-Gewerbe, in seinen Autohäusern und Kfz-Werkstätten. Daher kann dieses Berufsfeld auch eine Perspektive für Schülerinnen und Schüler aufzeigen, die sich für Automobile und Umweltschutz interessieren. Rohstoffgewinnung und Materialeinkauf Die Herstellung eines Kraftfahrzeugs erfordert diverse Materialien und Werkstoffe: Neben Glas, Kunststoffen, Lacken und Klebstoffen sind dies vor allem die Metalle Eisen, Aluminium, Stahl und Zink (autoberufe.de: Chemie am Auto) sowie Kupfer und Nickel (umweltbundesamt.de: Umweltrisiken und - auswirkungen). Werden Rohstoffe abgebaut, können sich (negative) Effekte auf die Umwelt ergeben wie Rodungen von Urwäldern und Verunreinigung des Wassers. Damit einher gehen auch der Verlust des Lebensraumes sowie die Beeinträchtigung der Gesundheit von Menschen, Tieren und Pflanzen. Energie- und emissionsintensive Metallerzeugung und -verarbeitung können Luftverschmutzungen, sauren Regen, Wasser- und Vegetationsschädigungen bedingen. Verseuchungen von Böden können eine Konsequenz von Schwermetallemissionen sein (umweltbundesamt.de: Umweltrisiken und - auswirkungen). Bei der Materialbeschaffung für die Produktion von Kraftfahrzeugen verpflichten sich Automobilhersteller aber seit 2021 durch das deutsche Lieferkettengesetz vermehrt dazu, neben den Kosten insbesondere auch die Einhaltung der Menschenrechte sowie soziale Mindeststandards (e-mobil.de: Zukunftsfähige Lieferketten) und ökologische Faktoren wie CO 2 -Neutralität zu berücksichtigen. Fahrzeugproduktion Auch wenn in der Kraftfahrzeugproduktion Emissionsreduktion und der Einsatz erneuerbarer Energien eine deutlich größere Rolle als in der Vergangenheit spielen, so können Umwelt- und Gesundheitsbelastungen dennoch entstehen, wenn Produktionsschritte in Entwicklungs- oder Schwellenländer verlagert werden, in denen andere gesetzliche, technische sowie ökologische Standards herrschen (gruene-bundestag.de: Klimafreundliche Produktion in der Automobilindustrie). Ein weiteres Problem sind die im Zuge der Fahrzeugproduktion und -entsorgung entstehenden Abfälle (gruene-bundestag.de: Klimafreundliche Produktion in der Automobilindustrie). Ferner erzeugen der Transport von Werkstoffen und einzelnen Produktkomponenten sowie der Vertrieb, die Nutzung und Entsorgung der fertigen Kraftfahrzeuge weitere Umweltbelastungen (gruene-bundestag.de: Klimafreundliche Produktion in der Automobilindustrie). Recycling und Wiederverwertung Seit 2002 besteht für Hersteller und Importeure von Fahrzeugen die Verpflichtung, ausgediente Fahrzeuge zurückzunehmen und zu verwerten; noch strengere Richtlinien existieren seit 2015. Werkstoffe können wieder- oder weiterverwendet werden, nachdem sie die Prozesse des stofflichen, rohstofflichen oder thermischen Recyclings durchlaufen haben. Prinzipiell muss ein Anteil von mindestens 95 Prozent des Altfahrzeug-Durchschnittsgewichts wieder zum Einsatz kommen, 85 Prozent mittels einer der beiden erstgenannten Wiederaufbereitungsprozesse oder einer unmittelbaren Wiederverwendung. Selbst PVC-haltige Restbestandteile können heutzutage wieder gebrauchsfertig aufbereitet werden (autoberufe.de: Altfahrzeug-Recycling). Instandhaltung und Reparatur "Das Handwerk ist die erste Adresse, wenn es um Nachhaltigkeit, Klimaschutz und Energiewende geht. [...] Handwerkerinnen und Handwerker arbeiten jeden Tag ganz praktisch daran, dass unser Leben nachhaltiger und klimafreundlicher wird" (handwerk.de: Klimaschutz). Im Kfz-Gewerbe geschieht dies vor allem bei der Instandhaltung und Reparatur von Fahrzeugen: Ein/-e Kfz-Mechatroniker/-in zum Beispiel wartet Fahrzeuge, setzt sie instand, analysiert ihre Fehler, rüstet sie nach und kontrolliert die Abgaswerte. Damit sorgt er oder sie für eine möglichst lange Lebensdauer und einen emissionsarmen Betrieb der Automobile und trägt einen Teil zur Ressourcenschonung sowie zu weniger Luftverunreinigung bei (youtube.com: Nachhaltigkeit im Kfz-Gewerbe). Gleiches gilt für Karosserie- und Fahrzeugbaumechaniker/-innen: Sie sorgen durch Reparatur, Wartung und Überprüfung der Fahrzeuge in technischer Hinsicht für deren Funktionstüchtigkeit (handwerk.de: Karosserie- und Fahrzeugbaumechaniker/-in). Auch im Elektromobilitätsbereich sind Kfz-Mechatroniker/-innen und Karosserie- und Fahrzeugbaumechaniker/-innen tätig (arbeitsagentur.de: Kraftfahrzeugmechatroniker/-in). Kfz-Mechatroniker/-innen prüfen die fahrzeugtechnischen Systeme von Hybrid- und Elektrofahrzeugen und natürlich Fahrzeugen mit Verbrennungsmotor, führen Reparaturen durch und rüsten Fahrzeuge mit Zusatz-, Sonder- und Zubehörausstattungen aus. Der Bereich Elektromobilität ist in den Kernlehrplänen der Kfz-Mechatroniker/-innen integriert. Die Auszubildenden lernen die Grundlagen der Hochvolttechnik und das sichere Arbeiten am Elektroauto. Neben den Grundkenntnissen besteht die Möglichkeit, sich im Laufe der Ausbildung auf den Schwerpunkt System- und Hochvolttechnik zu spezialisieren (wasmitautos.com: Ausbildung zum Kfz-Mechatroniker). Das Berufsbild heißt dann "Kfz-Mechatroniker/-in für System- und Hochvolttechnik". Kfz-Mechatroniker/-innen werden in 5 Schwerpunkten ausgebildet: Pkw-, Nutzfahrzeug-, Motorrad- und Karosserietechnik sowie System- und HV-Technik. Der grüne Kreislauf in den Werkstätten Umweltbewusstsein ist im Kfz-Gewerbe ein wichtiges Thema, denn es betrifft alle Bereiche: Die Devise der Kfz-Betriebe, instandzusetzen anstatt zu erneuern, spiegelt sich im sogenannten "grünen Kreislauf" wider: Verschiedene Restwertbörsen bieten mehr als 4,2 Millionen zertifizierte gebrauchte beziehungsweise Ersatzteile. Zur Effektivitätssteigerung werden hier inzwischen auch Kfz-Versicherungen in den Dialog mit Autoverwertern gebracht, indem Erstere Unfallfahrzeuge liefern, die Letztere sachgerecht zerlegen (autohaus.de: Autoverwertung 2.0). Angestrebt wird, das Zusammenspiel der verschiedenen Partner weiter auszubauen. Ein weiterer großer Bereich ist das Recycling der Batterien von Elektroautos (autohaus.de: Autoverwertung 2.0). Zudem wird für die Instandsetzungsbranche ein Nachhaltigkeitssiegel auf den Weg gebracht (autohaus.de: Kfz-Handwerk startet Initiative). Mittels eines Nachhaltigkeitsberichts ist es Betrieben ferner möglich, Kunden und Auftraggeber sowie öffentliche Einrichtungen oder Finanzdienstleister über ihr Engagement für Nachhaltigkeit zu informieren (kfzgewerbe.de: Nachhaltigkeitsbericht und Selbstcheck). Ressourcenschonung und Energieeffizienz im Autohaus und in der Kfz-Werkstatt Nachhaltigkeit ist auch in Autohäusern und Kfz-Werkstätten sowohl auf betrieblicher als auch auf Kundenseite eines der wichtigsten Themen: nachhaltige Mobilität durch umweltschonende Antriebe, wie zum Beispiel Elektro- und Hybridfahrzeuge oder E-Fuels, Nutzung erneuerbarer Energien bei gleichzeitiger Reduktion des Energieverbrauchs. Außerdem werden der Strom- und Wasserverbrauch minimiert, Raumtemperaturen gesenkt, LED-Leuchtmittel und Bewegungsmeldersysteme für die Belichtung verwendet (autohaus.de: Know-how-Serie). Weiteres Energieeinsparpotenzial zeigt sich in Kfz-Werkstätten auch durch die Reparatur von Druckluftanalagen oder deren Austausch mit Akkuwerkzeugen (kfzgewerbe.de: ZDK-Veranstaltung zur Nachhaltigkeit). Aktuelle Herausforderungen in Kfz- Gewerbe und Automobilindustrie Neuzulassungen sollen ab 2035 deutschland- und europaweit lokal lediglich noch für Fahrzeuge ohne Emissionen erlaubt sein (Clausen, Grimm und Pfaff 2022: 5). "Unser Ziel ist die Sicherstellung eines umweltverträglichen Kraftverkehrs durch Elektromobilität [...]" (kfzgewerbe.de: ZDK-Vorstand zur Nachhaltigkeit). Aber auch das Umweltprofil des Elektroautos gilt es zu optimieren, durch "neue, umweltschonende und sozial verträgliche Batterietechnologien und eine[n] zunehmend höheren Anteil an Erneuerbaren im Ladestrom" (Clausen, Grimm und Pfaff 2022: 12). In der Instandsetzungsbranche werden "[d]er verantwortungsvolle Umgang mit Ressourcen und Kreislaufwirtschaft [...] zu absoluten Schlüsselaufgaben werden" (autohaus.de: Autoverwertung 2.0). Ein weiteres Ziel ist die "Fachkräftesicherung [...] im Kfz-Gewerbe" (kfzgewerbe.de: ZDK-Vorstand zur Nachhaltigkeit), denn Fachkräfte werden vermehrt benötigt, beispielsweise zur Installation der Ladestationen für Elektroautos (handwerk.de: Klimaschutz und Nachhaltigkeit im Handwerk). Neben dem Klimawandel bietet auch die Digitalisierung neue Herausforderungen im Sinne der Produktionsmodernisierung (Clausen, Grimm und Pfaff 2022: 10) und Integration neuer Geschäftsmodelle wie etwa Mobilitätsdienstleistungen (Clausen, Grimm und Pfaff 2022: 15). Fazit Der Produktlebenszyklus eines Automobils erstreckt sich über die Phasen Rohstoffgewinnung, Herstellung, Vertrieb, Nutzung und Instandhaltung sowie Recycling, jeweils mit gewissem Input (Rohstoffe und Energie) und Output (zum Beispiel Abfälle, Abwasser oder Emissionen) (Koplin 2006: 189f.). Produkte, Materialeinkauf und Arbeitsschritte zu optimieren, hilft dabei, die Umwelteffekte zu reduzieren. Vor allem die Einführung des Elektroautos soll Umweltprofil und Zukunftsträchtigkeit der Automobilbranche stärken. Das Kfz-Gewerbe leistet vor allem durch Instandhaltung und Reparatur einen Beitrag zur Ressourcenschonung, gestützt durch den sogenannten "grünen Kreislauf". Da nachhaltige Mobilität auch für viele Schülerinnen und Schüler ein wichtiges Thema ist, kann ein Blick auf das Berufsfeld Kfz-Gewerbe in Berufsorientierungsphasen neue Impulse für den eigenen späteren Werdegang bieten. Verwendete Internetadressen Kfz-Gewerbe autoberufe.de: Altfahrzeug-Recycling. Online: https://www.autoberufe.de/fuer-berater-lehrer/unterrichtsmaterial/physik-chemie-wirtschaftslehre-sek-1/chemie-am-auto/altfahrzeug-recycling/ . autoberufe.de: Chemie am Auto . Online: https://www.autoberufe.de/fuer-berater-lehrer/unterrichtsmaterial/physik-chemie-wirtschaftslehre-sek-1/chemie-am-auto/ . kfzgewerbe.de: Nachhaltigkeitsbericht und Selbstcheck . Online: https://www.kfzgewerbe.de/dossier/nachhaltigkeit/nachhaltigkeitsbericht-und-selbstcheck . kfzgewerbe.de: ZDK-Veranstaltung zur Nachhaltigkeit: Umsetzung im Kfz-Gewerbe . Online: https://www.kfzgewerbe.de/zdk-veranstaltung-zur-nachhaltigkeit-umsetzung-im-kfz-gewerbe . kfzgewerbe.de: ZDK-Vorstand definiert strategische Ziele bis 2030 . Online: https://www.kfzgewerbe.de/zdk-vorstand-definiert-strategische-ziele-bis-2030 . wasmitautos.com: Deine Ausbildung zum Kfz-Mechatroniker (m/w/d) . Online: https://www.wasmitautos.com/ausbildung/kfz-mechatroniker-in/ . Weitere verwendete Internetadressen arbeitsagentur.de: Kraftfahrzeugmechatroniker/in . Online: https://web.arbeitsagentur.de/berufenet/beruf/14799 . autohaus.de: Autoverwertung 2.0: "Wir sind mehr als bereit". Online: https://www.autohaus.de/nachrichten/schadenbusiness/autoverwertung-2-0-wir-sind-mehr-als-bereit-3455871?_gl=1*1kvuonn*_up*MQ..&gclid=EAIaIQobChMIsdqAu-DrggMVmkNBAh05dAjSEAAYASAAEgLF6_D_BwE . autohaus.de: Kfz-Handwerk startet Initiative: Nachhaltigkeitssiegel soll kommen . Online: https://www.autohaus.de/nachrichten/werkstatt/kfz-verbaende-starten-initiative-nachhaltigkeitssiegel-soll-kommen-3437260 . e-mobilbw.de: Zukunftsfähige Lieferketten und neue Wertschöpfungsstrukturen in der Automobilindustrie (2022). Online: https://www.e-mobilbw.de/fileadmin/media/e-mobilbw/Publikationen/Studien/Studie_Zukunftsfaehige_Lieferketten_und_neue_Wertschoepfungsstrukturen_in_der_Automobilindustrie.pdf . gruene-bundestag.de: "Klimafreundliche Produktion in der Automobilindustrie. Kurzstudie im Auftrag der Bundestagsfraktion Bündnis 90/Die Grünen" (2021). Online: https://www.gruene-bundestag.de/fileadmin/media/gruenebundestag_de/themen_az/mobilitaet/pdf/Kurzstudie_Klimaschutzstrategien_Automobilindustrie_Endfassung.pdf . handwerk.de: Karosserie- und Fahrzeugbaumechaniker*in . Online: https://www.handwerk.de/infos-zur-ausbildung/ausbildungsberufe/berufsprofile/karosserie-und-fahrzeugbaumechanikerin . handwerk.de: Klimaschutz und Nachhaltigkeit im Handwerk . Online: https://www.handwerk.de/ueber-das-handwerk/klimaschutz_und_nachhaltigkeit_im_handwerk . umweltbundesamt.de: Umweltrisiken und -auswirkungen in globalen Lieferketten deutscher Unternehmen – Branchenstudie Automobilindustrie (2022). Online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2022-05-06_texte_56-2022_innovative_werkzeuge_lieferkette-branchenstudie_automobil.pdf . youtube.com: Nachhaltigkeit im Handwerk | Kraftfahrzeugmechatroniker Aaron - Nachhaltigkeit im KFZ-Gewerbe. Online: https://www.youtube.com/watch?v=5KkL7SJCNHc . Verwendete Literatur Brunner, Marc (2006). Strategisches Nachhaltigkeitsmanagement in der Automobilindustrie. Eine empirische Untersuchung . Wiesbaden: Deutscher Universitätsverlag. Clausen, Jens, Anna Grimm und Matthias Pfaff (2022). "Die erfolgreiche Transformation der Automobilbranche". Working Paper Forschungsförderung 253. Düsseldorf: Hans-Böckler-Stiftung. Koplin, Julia (2006). Nachhaltigkeit im Beschaffungsmanagement. Ein Konzept zur Integration von Umwelt- und Sozialstandards . Wiesbaden: Deutscher Universitätsverlag. Weiterführende Literatur Bozem, Karlheinz, Anna Nagl und Carsten Rennhak (2013). Energie für nachhaltige Mobilität. Trends und Konzepte . Wiesbaden: Springer Gabler. Köllner, Christiane. "Ohne Kupfer keine Mobilität". SpringerProfessional . Online: https://www.springerprofessional.de/werkstoffe/elektromobilitaet/ohne-kupfer-keine-mobilitaet/15433682 . Sackmann, Christoph. "Lithium, Kobalt, Nickel. Drei Wege, wie das E-Auto durch das Rohstoff-Nadelöhr kommt". Focus . Online: https://www.focus.de/auto/elektroauto/knappe-vorkommen-problematische-foerderung-lithium-kobalt-nickel-wo-die-rohstoffe-fuer-die-e-auto-wende-herkommen-sollen_id_184540748.html . Witzke, Sarah (2016). Carsharing und die Gesellschaft von Morgen. Ein umweltbewusster Umgang mit Automobilität? Wiesbaden: Springer Gabler.

  • Chemie / Technik
  • Fort- und Weiterbildung, Sekundarstufe I, Sekundarstufe II

Die Welt des Fliegens: MINT-Lerneinheiten für die Oberstufe

Kopiervorlage

Fliegen ist nicht nur ein Akt der Fortbewegung, sondern ein komplexes Zusammenspiel von Naturwissenschaften, Technik, Wirtschaft und Umwelt. Das Arbeitsbuch "Fliegen" deckt all diese Bereiche ab und bietet Ihnen genügend Ressourcen, um in Ihrem MINT-Unterricht abzuheben. Durch praxisnahe Aktivitäten und anschauliche Experimente werden die Schülerinnen und Schüler dazu angeregt, die physikalischen Gesetze des Fliegens zu erforschen, die Technologie hinter modernen Flugzeugen zu verstehen und die ökonomischen und ökologischen Auswirkungen des Luftverkehrs zu analysieren. Ob Aerodynamik, Meterologie, Flugrouten oder Emissionsvermeidung: Das Arbeitsbuch "Fliegen" bietet spannende, handlungsorientierte, lehrplankonforme und fächerübergreifende Unterrichtsmaterialien. Nich allein für das Fach Physik werden Sie viele Anregungen für den Unterricht finden, sondern auch für die Fächer Biologie, Geographie, Englisch, Wirtschaftskunde, Technik oder Chemie. Das Arbeitsbuch ist zugeschnitten auf Gymnasien und Gesamtschulen mit gymnasialer Oberstufe. Schülerinnen und Schüler für die Luftfahrt begeistern Der Flugverkehr ist ein wesentlicher Bestandteil des modernen Lebens und der globalen Konnektivität. Er stellt nicht nur einen bedeutenden Wirtschaftsfaktor dar, sondern spielt auch eine zentrale Rolle in der globalen Mobilität und im internationalen Handel. Daher ist es sinnvoll, junge Menschen für die verschiedenen Themengebiete und Aufgaben in der Luftfahrt zu interessieren. Warum nicht auch im Klassenzimmer? Während Naturwissenschaften und Technik (Flugphysik, Meteorologie, Strömungslehre) eine grundlegende Rolle spielen, sind auch viele soziale, wirtschaftliche und umweltpolitische Fragen relevant. Zu allen genannten Punkten finden sich Unterrichtsideen im vorliegenden Handbuch. Obwohl die Deutsche Flugsicherung eine breite Palette an Berufsmöglichkeiten für Fluglostinnen und Fluglotsen , Ingenieurinnen und Ingenieure und Informatikerinnen und Informatiker bietet, ist sie als Ausbildungsstätte weitgehend unbekannt. Deshalb ist es umso wichtiger, jungen Menschen diese attraktive und sichere berufliche Perspektive näherzubringen. Aufbau des Arbeitsbuchs "Fliegen" und Schwerpunktthemen Kapitel 1: Geschichte (Geschichte des Fliegens, Geschichte der Flugsicherung) Kapitel 2: Geographie (Flugbewegungen, Flugrouten und Flugzeit, Zeit und Zeitzonen, Navigation) Kapitel 3: Englisch – Sprache der Luftfahrt (Funkverkehr, Phraseologie) Kapitel 4: Flugverkehr (Flugverkehr – ein gigantisches Unterfangen, Pilot und Tower am Start / bei der Landung, Kontrolle des Luftraums) Kapitel 5: Fluggeräte und Technik (Impuls, Impulserhaltung, Hubschrauber, Flugzeuge, Wir bauen ein Flugmodell, Navigationssysteme (ILS) und Radar) Kapitel 6: Biologie (Biologie des Fliegens, Vogelflug – die größte Flugschau der Welt, Insekten als fliegende Liebesboten, Pollenflug, Sporenverbreitung durch die Luft) Kapitel 7: Strömungslehre (Einführung in die Strömungslehre, Dynamischer Auftrieb, Luftwiderstand, Profilpolare, Wirbel) Kapitel 8: Meteorologie (Alle reden vom Wetter, Enteisung, Luftdruck, Fronten, Vulkanismus und Luftfahrt, Luftlöcher) Kapitel 9: Chemie (Chemie des Fliegens, Federn: Leichtgewichte mit Potenzial, Der Stoff, aus dem die Flügel sind, High Tech – Low Weight, Schweben – leichter als Luft) Kapitel 10: Human Factors (Fähigkeiten für die Karriere, Teamfähigkeit, Leistungsvermögen, Eigenanalyse der Schwächen und Stärken, Selbstbewusstsein stärken, Körpersprache – Eigenregie – Resilienz, Stressbewältigung, Zeitmanagement) Kapitel 11: Flugphysik (Die Mechanik des Fliegens, Kräfte und Bewegungsphasen, Leitwerke und Ruder, Fahrwerk, Steuerorgane – Flugverhalten, Trimmung, Flugfiguren) Kapitel 12: Fliegen und Umwelt (Fliegen und Umwelt – ein Widerspruch in sich?, Zero Emission – Wasserstoff im Tank, CO 2 – Das Unsichtbare sichtbar machen, Bio-Kerosin – Aufwind durch Rapsfelder?, Billigflieger – Vom Monopol zur Marktwirtschaft, "Greenwashing" – Ökomeilen statt Bonusmeilen?, Fliegen und Lärm – der Kampf um die Dezibels (dB)) Kapitel 13: Biology (Biology of Flight, Bird flight, Insects, Pollen flight, Air-borne spore dispersal) Kapitel 14: Human Factors (career capabilities, Mutual respect and disregarding your own feelings, Human performance, Body language – self-assurance – resilience, Stress management) Zu allen Themen finden Sie Bauanleitungen, Versuchsbeschreibungen, Aufgaben, Lösungen, Fotos und Grafiken sowie Zusatzmaterialien.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Geographie / Jahreszeiten / Physik / Astronomie / Technik / Sache & Technik / Geschichte / Früher & Heute / Englisch / Wirtschaft
  • Sekundarstufe II, Berufliche Bildung

Gesundheit und MINT: Berufsorientierung Hörakustiker-Handwerk

Fachartikel

Der Alltag von Schülerinnen und Schülern ist digital, nutzen doch viele von ihnen täglich Smartphones, Smartwatches, Tablets und mehr. Digitalisierung wird auch in ihrem Berufsleben eine zentrale Rolle spielen. Daher gibt dieser Fachartikel einen Einblick in das Thema "Digitalisierung im Beruf" am Beispiel des Hörakustiker-Handwerks, das traditionelles Handwerk und moderne Technologien verbindet. Da moderne Hörgeräte eine besondere Schnittstelle zwischen Gesundheit und Hightech darstellen, stehen die Anfertigungstechniken von Ohrpassstücken (Otoplastiken) und deren Innovation in Ausbildung und Meisterprüfung hier im Fokus. Der digitale Alltag Die Lebenswelt von Schülerinnen und Schülern ist digital geprägt. Die Digitalisierung durchdringt aber auch die Berufswelt, die sich durch technologische Innovationen stetig weiter ausdifferenziert. So auch im Hörakustiker-Handwerk, in dem Hörgeräte heutzutage Erstaunliches leisten können und mit entsprechenden Fachkenntnissen aus Physik, Informatik, Chemie, Biologie und Technik angefertigt werden. Für MINT-affine Schülerinnen und Schüler kann dieses Handwerk eine interessante Option in der Berufsorientierung darstellen. Von Audiostreaming bis KI-gesteuerte Hörgeräte Jedes Ohr ist anders. Menschen mit Hörminderung benötigen daher ein individuelles Hörgerät. Heutige Hörgeräte können aber deutlich mehr als "nur" Hörminderungen ausgleichen, denn mit ihnen sind ihre Trägerinnen und Träger vollumfänglich digital unterwegs. Die individuell angefertigte und programmierte Hörhilfe ist mittlerweile eine Selbstverständlichkeit, ebenso ihre Bedienung über das Smartphone. Mit Bluetooth-Anbindung und Künstlicher Intelligenz (KI) können sie auf individuelle Hörsituationen eingestellt und mit digitalen Endgeräten wie Smartphones und Smart-TVs verbunden werden. Zukunftsmusik spielen auch cloudbasierte Hörsysteme für größeren Komfort in Eingewöhnungs- und Nutzungsphase sowie Hörgeräte, die dem gesunden Ohr nachempfunden sind und mit dem Gehirn gesteuert werden. Gesundheits-Controlling und Assistenz mit Hörgeräten Sogenannte Healthables machen es möglich, über die reine Hörgerätefunktion hinaus zu agieren, indem zum Beispiel medizinisch relevante Daten wie Blutzuckerspiegel, Pulsfrequenz oder Temperatur erfasst werden. Auch können Simultanübersetzungen oder Töne in Konzerten unmittelbar in die Hörhilfe eingespielt werden. Hörsysteme können sogar Fahrgeräusche beim Autofahren vermindern oder währenddessen per Datenübertragung Lokale mit vorteilhafter Akustik ermitteln. Geräte mit Bewegungssensor lösen bei einem Sturz der Nutzerin oder des Nutzers automatisch Alarm aus. Darüber hinaus existieren bereits Innenohrimplantate, die Gehörlosen das Wahrnehmen gewisser Töne ermöglichen. Voraussetzung dafür ist die individuelle Anfertigung von Hörhilfen, die heutzutage mit Digitaltechnologien unterstützt wird. Einblick in die digitalisierte handwerkliche Otoplastik-Herstellung Das Hörakustiker-Handwerk ist in der Digitalisierung fortgeschritten. Um Otoplastiken kostengünstig und passgenau herstellen sowie optimieren zu können, helfen 3D-Druck, 3D-Laserscanning und Modellierungssoftwares wie Computer-Aided Design (CAD) und Computer-Aided Manufacturing (CAM). Diese fanden bislang vor allem im industriellen Umfeld Anwendung. Bei der Otoplastik, dem Ohrpassstück, handelt es sich um einen Teil eines Hörgerätes, der individuell angefertigt wird, fix im Gehörgang sitzt und diesen mit dem Hörsystem verbindet. Otoplastiken können aber auch für Gehörschutz oder Im-Ohr-Kopfhörer individuell angefertigt werden. Die Gehörgangabformung wird entweder manuell erstellt und mittels eines 3D-Scanners digitalisiert oder direkt digital erfasst. Dabei wird eine 3D-Grafik der physischen Abformung mit einer Software bearbeitet und spezifiziert. Im Zuge dieses Vorgangs lässt sich somit ein digitales 3D-Modell der Otoplastik herstellen. Den Hörakustikerinnen und Hörakustikern ist es dadurch möglich, "individuell angepasste Hörgeräte zu entwerfen, die optimalen Komfort und beste Klangqualität [bieten]" (mrn-news.de). Das maßgefertigte 3D-Modell der Otoplastik wird schließlich am 3D-Drucker ausgedruckt, ausgegossen und entsprechend ausgearbeitet. Smarte Ohren und Hightech-Ohrsimulatoren: Technologie in Ausbildung und Meisterprüfung Das Bundesministerium für Bildung und Forschung fördert mit dem Programm "Digitalisierung in überbetrieblichen Bildungsstätten" die Technologie "smarter Ohren" zu Übungszwecken angehender Hörakustikerinnen und Hörakustiker: "Als bundesweit zentrale und weltweit größte Ausbildungsstätte des Hörakustiker-Handwerks ist der Campus Hörakustik in Lübeck die erste Berufsbildungseinrichtung in Deutschland, die die in Kanada entwickelten Hightech-Ohrsimulatoren im Unterricht einsetzt" (Akademie für Hörakustik). Ebenso werden diese bereits in der Prüfungsvorbereitung verwendet; auch in der dualen Ausbildung ist deren Gebrauch geplant. Im Juli 2023 fand erstmalig CAD-Modelling Anwendung in der Meisterprüfung, um zu gewährleisten, dass die Hörakustikerinnen und Hörakustiker diese neue Technologie nutzen und Kundinnen und Kunden anbieten können. Fazit Das Hörakustiker-Handwerk bringt als Gesundheitshandwerk Mensch und Technik zusammen. So einzigartig wie jedes Ohr ist, so individuell müssen auch Hörhilfen für Menschen mit Hörminderung sein. Der Herstellungsprozess von Otoplastiken (Ohrpassstücken) für moderne Hörhilfen und für Gehörschutz zeigt exemplarisch, wie Digitalisierung handwerkliche Tätigkeiten unterstützt und zukunftsweisend sein kann. Durch 3D-Laserscanning, 3D-Druck und Modellierungssoftwares werden die Formpassstücke individuell sowohl an den Menschen als auch an die technischen Anforderungen der modernen Hörsysteme als "winzige Hochleistungscomputer" angepasst – denn heutige Hörhilfen bieten weitaus mehr als die reine Hörgerätefunktion (wissenschaftsjahr.de). Digitalisierung in all ihren Facetten ist ein bestimmendes Thema im Leben und Alltag von Schülerinnen und Schülern. Der alltägliche Umgang mit digitalen Technologien wird auch ihr Berufsleben prägen. Wer sich besonders für MINT-Fächer und Technik interessiert und mit Menschen arbeiten möchte, kann im Hörakustiker-Handwerk eine berufliche Zukunft finden. Verwendete Internetadressen Akademie für Hörakustik. Auf Anfrage: https://www.afh-luebeck.de/kontakt/ . Arbeitsagentur. Online: https://web.arbeitsagentur.de/berufenet/beruf/129408 . Bundesinnung der Hörakustiker. Online: https://www.biha.de/pages/filme/wdh_biha_otoplastik_jaspert.php . Der Hörakustiker. Online: https://www.der-hoerakustiker.de/ueber-uns/aktuelle-pressemitteilungen/305457.duale-ausbildung-in-der-hoerakustik---handwerk-mit-viel-hightech-und-beratung/ . Ihr Hörgerät: Audio-Streaming. Online: https://www.ihr-hoergeraet.de/audio-streaming-fuer-hoergeraete-in-neuer-dimension/ . Ihr Hörgerät: Hörtechnologie. Online: https://www.ihr-hoergeraet.de/hoertechnologie-die-naechste-generation-der-hoergeraete/ . Kompetenzzentrum Kommunikation. Online: https://www.kompetenzzentrum-kommunikation.de/praxisbeispiele/hoert-hoert-zwei-hoerakustiker-in-der-digitalen-transformation-446/ . MRN News. Online: https://www.mrn-news.de/2023/09/06/innovationen-im-hoerakustiker-handwerk-sind-nun-fester-bestandteil-der-meisterpruefung-511173/ . Wissenschaftsjahr. Online: https://www.wissenschaftsjahr.de/2018/neues-aus-den-arbeitswelten/berufe-im-wandel/berufe-wandeln-sich/hoerakustikerin-und-hoerakustiker/index.html . Verwendete Literatur Buckow, Marvin: "Otoplastiken Drucken oder Gießen?" hörPlus. Hören neu erleben. Online: https://www.hoerplus.de/blog/otoplastiken-drucken-oder-giessen/. Köhler, Bernhard: "Herstellung weicher Otoplastiken im Cast Verfahren." detax.de. Online: https://www.detax.de/de-wAssets/docs/de/pressecenter-audio/Fachartikel/DETAX-Hoerakustik-Koehler-1505.pdf . Weiterführende Literatur Ulrich, Jens und Eckhard Hoffmann (2019). Hörakustik Basics: Das Wissen für die moderne Hörsystemanpassung . 3. Aufl. Heidelberg: DOZ. Ulrich, Jens und Eckhard Hoffmann (2023). Hörakustik Praxis. Das Kompendium für die moderne Hörsystem-Anpassung . Heidelberg: DOZ.

  • Biologie / Technik
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Erneuerbare Energien im Detail

Unterrichtseinheit

In dieser aktualisierten Unterrichtseinheit befassen sich die Lernenden mit dem Thema erneuerbare Energien. Im Mittelpunkt stehen dabei Photovoltaik und Windkraft. Die Auseinandersetzung mit Ideen und Trends des energieeffizienten Bauens unter Berücksichtigung erneuerbarer Energien rundet die Unterrichtseinheit ab. Neu sind die Materialien zu den Arten und der Funktionsweise von Batteriespeichern sowie Wärmepumpen. Ausgehend von der aktuellen und zukünftigen Bedeutung erneuerbarer Energien für die Stromversorgung sowie den Chancen und Herausforderungen der Energiewende befassen sich die Schülerinnen und Schüler näher mit den Energieformen Batteriespeicher und Wärmepumpen, Windenergie und Photovoltaik. Dabei lernen sie unter anderem die Verbreitung und Funktionsweise der Anlagen kennen. Abschließend befassen sie sich mit den Möglichkeiten, energiesparend zu wohnen. Dabei steht auch das Konzept des vernetzten, smarten Wohnens und Arbeitens im Quartier im Mittelpunkt. Fossile Brenn-, Kraft- und Heizstoffe wie Kohle und Öl sind nicht unbegrenzt vorhanden. Viele davon müssen teuer importiert werden. Zudem belasten sie Umwelt, Klima und Gesundheit. Aus diesem Grund werden erneuerbare Energien immer wichtiger. So ist in der Novelle des Erneuerbaren-Energien-Gesetz von 2017 festgelegt, dass bis zum Jahr 2025 der Anteil erneuerbarer Energien am Bruttostromverbrauch auf 40 bis 45 Prozent steigen und sich bis zum Jahr 2035 auf 55 bis 60 Prozent erhöhen soll. Im Jahr 2050 soll der dann mindestens 80 Prozent betragen. Wissen über die Merkmale erneuerbarer Energieträger, die mit ihrer Nutzung verbundenen Vorteile und Herausforderungen sowie neue Trends für das vernetzte Zusammenleben von Menschen ist deshalb elementar. Umsetzung der Unterrichtseinheit Die aktualisierte Unterrichtseinheit ermöglicht Schülerinnen und Schülern einen fächerübergreifenden Zugang zum Thema erneuerbare Energien. Dazu erschließen sie in einem ersten Schritt die verschiedenen erneuerbaren Energieträger mit ihren Merkmalen und Funktionsweisen. Dabei reflektieren sie auch die mit der Energiewende verbundenen Chancen und Herausforderungen. Darauf aufbauend lernen sie den Aufbau und die Funktionsweise einer Windkraftanlage und einer Photovoltaikanlage näher kennen. Gleichzeitig lernen sie aktuelle Entwicklungen wie den Solarstromspeicher kennen. Abschließend setzen sie sich mit Möglichkeiten energiesparenden Wohnens und Arbeitens unter der Nutzung erneuerbarer Energien auseinander. Dabei geht es neben der Funktionsweise um neue Konzepte wie das des vernetzten, smarten Wohnens und Arbeitens im Quartier. Anhand zwei neuer Arbeitsmaterialien befassen sie sich mit den Arten und der Funktionsweise sowie den Vor- und Nachteilen von Batteriespeichern sowie Wärmepumpen. Ein interaktives Multiple-Choice-Quiz dient der Wiederholung und Festigung des in dieser Unterrichtseinheit erlangten Wissens. Jedes Arbeitsblatt umfasst neben Infotexten, Grafiken und Schaubildern auch Aufgaben zur Bearbeitung. Neu ist, dass die angegebenen Links zu Videoclips, Webseiten oder weiterführenden Materialien über QR-Codes erreichbar sind und so direkt per Smartphone abgerufen werden können. Einsatzmöglichkeiten Die aktualisierte Unterrichtseinheit kann aufgrund ihres Bezuges zu den Lehr- und Bildungsplänen in allen deutschen Bundesländern in der Sekundarstufe II eingesetzt werden. Dabei bilden die Fächer Physik, Geografie, Technik und Sozialkunde den fachlichen Bezugspunkt. Aber auch im fachübergreifenden und fächerverbindenden Unterricht kann das Material eingesetzt werden. Fachkompetenz Die Schülerinnen und Schüler wissen, wie sich der Anteil erneuerbarer Energien an der Stromversorgung entwickelt. kennen die wichtigsten nachwachsenden beziehungsweise erneuerbaren Energieträger. kennen den Aufbau und die Funktionsweise einer Windkraftanlage und einer Photovoltaikanlage und können diese mit eigenen Worten beschreiben. wissen, wie ein Solarstromspeicher funktioniert. kennen den Unterschied zwischen On- und Offshore-Windkraft. kennen Konzepte und Möglichkeiten energiesparenden Wohnens und Arbeitens unter der Nutzung erneuerbarer Energien. kennen die Arten und Funktionsweise von Batteriespeichern und Wärmepumpen und können sie mit eigenen Worten verständlich beschreiben. wissen um die Bedeutung eines durchdachten Energiemanagements für eine effektive Verteilung der zur Verfügung stehenden Energie in den eigenen vier Wänden. diskutieren die mit der Energiewende verbundenen Chancen und Herausforderungen. analysieren die Stromrechnung des eigenen Haushalts und erfahren so, aus welchen Quellen der von ihnen genutzte Strom stammt. diskutieren die Auswirkungen der verstärkten Hinwendung zu erneuerbaren Energien für die Bereiche Wirtschaft, Gesellschaft und Umwelt. überlegen und diskutieren, inwieweit neue smarte, vernetzte, intelligente Wohn- und Arbeitskonzepte auch in ihrer eigenen Zukunft infrage kommen. Medienkompetenz Die Schülerinnen und Schüler trainieren das selbstständige Erschließen von Themen und Inhalten sowie das Recherchieren im Internet. üben sich im eigenständigen Analysieren und Interpretieren von Grafiken, Schaubildern und Zahlenmaterial. nutzen aktiv verschiedene Medien und erkennen deren Vor- und Nachteile im Rahmen der Informationsaufbereitung. bereiten eigene Ideen und Visionen schriftlich und gestalterisch auf. Sozialkompetenz Die Schülerinnen und Schüler trainieren im Rahmen von Partner- oder Gruppenarbeit ihre Zusammenarbeit mit anderen Personen. lernen, Diskussionen argumentativ und rational zu führen. schulen im Rahmen von Diskussionen und Präsentationen die eigene Ausdrucksfähigkeit und aktives Zuhören. trainieren das kreative Entwickeln und Ausformulieren eigener Ideen.

  • Physik / Astronomie / Technik / Sache & Technik / Elektrotechnik / Fächerübergreifend
  • Sekundarstufe II

Berufsbild "Land- und Baumaschinenmecha­troniker/-in"

Fachartikel

Digitale Technik durchdringt das gesamte Handwerk, darunter besonders jenes der Land- und Baumaschinenmechatroniker/-innen. Dieser Fachartikel beleuchtet das breite Tätigkeitsspektrum in diesem Beruf, welches das Warten, Instandsetzen und Reparieren klassischer und hoch technologisierter Maschinen und Fahrzeuge umfasst. Der technologische Fortschritt bedingt eine Erweiterung der Kenntnisse und Anforderungen an (angehende und potenzielle) Land- und Baumaschinenmechatroniker/-innen und kann sich daher in Berufsorientierungsphasen als besonders interessant für MINT-begeisterte Schülerinnen und Schüler erweisen. Land- und Baumaschinenmechatroniker/-innen sind Handwerker/-innen, die Land- und Baumaschinen, Motorgeräte und Flurförderzeuge zum Beispiel in Werkstätten, bei Bauhöfen, bei Kunden oder im Straßenbau reparieren, warten und instand setzen. Seit über 80 Jahren gibt es das Land- und Baumaschinenmechatroniker-Handwerk, dessen Frauenanteil seit den 1980er Jahren langsam, aber stetig wächst. In den vergangenen Jahren hat sich das Berufsbild stark gewandelt, denn in kaum einem anderen Handwerksberuf ist die Digitalisierung so weit vorangeschritten wie in diesem. Während zur Entstehungszeit dieses Handwerks ausschließlich metalltechnische Bearbeitungen, das Instandhalten, Reparieren und Neuanfertigen mechanischer Bauteile und Baugruppen im Fokus standen, rückt die Beschäftigung mit Sensorik, (Elektro-)Hydraulik, Informatik und Steuerungstechnik in mechatronischen Gesamtsystemen von Maschinen und Geräten immer mehr in den Mittelpunkt und ist Gegenstand der täglichen Arbeit. Dadurch erweitert sich die Bandbreite an beruflichen Anforderungen und Ausbildungsinhalten stetig, denn Land- und Baumechatroniker/-innen befassen sich sowohl mit klassischen Maschinen als auch mit hoch technologisierten Fahrzeugen. Für (angehende) Fachkräfte in diesem Beruf bedeutet das, dass sie ein ausgeprägtes Verständnis für Elektrik, Elektronik, Mechanik und Hydraulik haben müssen, damit sie mit neuen wie älteren Fahrzeugen und Maschinen umgehen können. Zudem müssen sie über ein Kombinationsvermögen verfügen, denn der Schraubenschlüssel begleitet sie in ihrer täglichen Arbeit gleichsam wie der Laptop und dessen digitale Softwares. Das Wissen und die Anwendungsgebiete sind dabei vielfältig. Sie reichen von mathematischen und physikalischen Grundlagen über Fertigkeiten in der Metallbearbeitung (schweißen, flexen, schneiden, …) bis hin zu Arbeiten in unterschiedlichsten High-Tech-Bereichen wie Smart Farming, autonom fahrenden Systemen und Vernetzung von Fahrzeugen und Maschinen. Die Bandbreite dieses Berufsprofils zeigt sich tatsächlich auch in der Evolution seiner Bezeichnung: Sprach man 1941 noch von Landmaschinenschlossern und später von Landmaschinenmechanikern, sind es heutzutage die Land- und Baumaschinenmechatroniker/-innen, um die Vielfalt und die gesteigerten technischen Anforderungen auch in der Berufsbezeichnung abzubilden. Entsprechend wurde der Meistertitel 2021 zum Land- und Baumaschinenmechatroniker Meister angepasst. Berufsbild Land- und Baumaschinenmechatroniker/-in im Zeitalter der Digitalisierung Digitalisierung spielt in diesem Handwerk eine tragende Rolle. In einer Online-Umfrage des Bundesinstituts für Berufsbildung bewertete 2019 etwa die Hälfte der befragten Teilnehmenden ihren eigenen Betrieb im Arbeitsbereich Land- und Baumaschinenmechatroniker/-innen als hochgradig und rund 42 Prozent als mittelmäßig digitalisiert. Doch wie sieht hier Digitalisierung konkret aus? Ein Beispiel: Es ist Erntezeit und der Maishäcksler auf dem Feld, der im Dauereinsatz ist, fällt plötzlich aus. Die Landwirtin / Der Landwirt oder die Lohnunternehmerin / der Lohnunternehmer steht unter Zeitdruck, denn das Wetter kann sich schnell ändern – wird die Landmaschine nicht rechtzeitig repariert oder ersetzt, kann dies zu Ernteausfällen führen. Daher kontaktiert sie/er den Bereitschaftsdienst einer Werkstatt, der die Maschinendaten des Maishäckslers digital via Satelliten anfordert und analysiert. Nach der Ferndiagnose organisiert der/die Land- und Baumaschinenmechatroniker/-in in der Werkstatt ein Ersatzteil, fährt zum Feld, repariert und überprüft mit Werkzeug und Laptop-Software das Fahrzeug. Die Maisernte kann fortgesetzt werden. Wie das Beispiel zeigt, müssen Fachkräfte dieses Handwerks in der Lage sein, auch mit Sensorik, Vernetzung und Datenkommunikation umgehen zu können. Mithilfe von Signalen, die über Sensoren erfasst, netzbasiert übertragen und mit Softwares analysiert werden, können Land- und Baumaschinenmechatroniker/-innen physikalische Prozesse steuern und regeln. Auf diese Weise können sie auf Maschinendaten auch auf Entfernung zugreifen und dadurch Prozesse effektiver und effizienter gestalten. In der Landwirtschaft zeigt sich dies zum Beispiel durch Maschinen, die auf Boden-, Flur- und Feuchtigkeitskarten zugreifen und dadurch Flächen, die nicht gedüngt werden müssen, aussparen können. Auch ist es durch digitale Datenanalyse möglich, Betriebsstände, Fehlercodes und Spritverbrauch von Fahrzeugen auszulesen und anschließend Rückschlüsse auf proaktive oder präventive Fehlerbehebungen und Optimierungen zu ziehen. Das wirkt sich wiederum positiv auf nachhaltiges, umweltfreundlicheres und ressourcensparendes Arbeiten sowie bessere Ernteergebnisse aus. Ebenso werden zunehmend maschinelle Funktionen mittels Informations- und Kommunikationstechnologien automatisiert. So gibt es bereits autonom fahrende Traktoren, Erntemaschinen und Feldroboter. Sensoren erfassen die Umgebung des Fahrzeugs, das GPS-System bestimmt die Position auf der Fläche, um Erntearbeiten auf vorprogrammierten Routen autonom durchführen zu können. Während der Ernte werden die Daten ausgewertet, um Erntestrategien zu optimieren, Bewegungen und Schneidevorgänge anzupassen. Land- und Baumaschinenmechatroniker/-innen können dies aus der Ferne via Datenübertragung überwachen. Dementsprechend müssen sie die Technik dahinter verstehen, um bei möglichen Fehlern fundierte Fehleranalysen, Reparaturen und Optimierungen an den Maschinen vornehmen zu können. Ein technologisches Verständnis ist auch in anderen Arbeitsbereichen erforderlich. So arbeitet man in der Baumaschinentechnik zum Beispiel mit 3D-Maschinensteuerungen, um zentimetergenau arbeiten zu können. Viele moderne Baumaschinen und -fahrzeuge setzen zudem bereits auf alternative Antriebsmöglichkeiten (hybrid, solar, elektronisch) und können dadurch einen Beitrag zum Ressourcen- und Umweltschutz beitragen. In der Motorgerätetechnik finden sich elektronisch steuerbare und akkubetriebene Geräte (zum Beispiel vollautomatische Mähroboter), die mit dem Smartphone, Tablet oder Laptop ferngesteuert werden können. In der Flurfördertechnik wiederum können Gabelstapler beziehungsweise Lagertechnikgeräte selbständig ideale Routen berechnen und cloudbasiert gesteuert werden. Zusammenfassend lässt sich also festhalten, dass die Digitalisierung im Handwerk der Land- und Baumaschinenmechatroniker/-innen eine äußerst entscheidende Rolle spielt. Dementsprechend kann sich dieser Beruf besonders für Schülerinnen und Schüler eignen, die stark in Mathematik, Physik und Werken/Technik und gegenüber technologischen Entwicklungen aufgeschlossen sind. Zudem sollten sie handwerkliches Geschick, Sorgfalt und Verantwortungsbewusstsein sowie ein ausgeprägtes technisches Verständnis von und Interesse an aktuellen technologischen Entwicklungen mitbringen. Fazit Land- und Baumaschinenmachtroniker/-innen reparieren, warten und setzen Land- und Baumaschinen, Motorgeräte und Flurförderzeuge instand. Heutzutage müssen sie dafür sowohl das mechanische als auch das digitale Handwerk beherrschen und dementsprechend Elektrik, Elektronik, Mechanik, Hydraulik, Motortechnik und Metallurgie verstehen. Digitalisierung durchdringt dabei das gesamte Handwerk und erweitert damit auch das Anforderungsprofil an die (potenziellen) Fachkräfte, die sich mit klassischen sowie voll- und teilautomatisierten Maschinen, mit Fernsteuerungssystemen, digitaler Fehlerdiagnostik oder Hybrid-, Solar- und Elektroantriebssystemen befassen und damit immer am Puls der Zeit arbeiten. In der Berufsorientierung kann sich dieses Berufsfeld an Lernende richten, deren Stärken und Interessen sich in der Physik und Mathematik und in (hoch technologisierten) Großmaschinen und -fahrzeugen befinden. Als Land- und Baumaschinenmechatroniker/-in ist Kontakt mit Kunden und die dazugehörige Dokumentation ebenso Bestandteil des Jobs wie der Umgang mit großen und kleineren Maschinen. Verwendete Internetadressen Agrartechnikonline.de. "Aus 'Landmaschinenmechaniker' wird 'Land- und Baumaschinenmechatroniker-Handwerk'". Online: https://www.agrartechnikonline.de/news/aus-landmaschinenmechaniker-wird-land-und-baumaschinenmechatroniker-handwerk/ . Bayerischer Rundfunk: "Land- und Baumaschinenmechatroniker/-in| Ausbildung | Beruf | Ich mach’s | BR". Online: https://www.youtube.com/watch?v=mWwfKAzh6aY . Bundesagentur für Arbeit: "Land- und Baumaschinenmechatroniker/-in". Online: https://web.arbeitsagentur.de/berufenet/beruf/124412 . Bundesagentur für Arbeit: "Steckbrief. Land- und Baumaschinenmechatroniker/-in". Online: https://planet-beruf.de/fileadmin/assets/PDF/BKB/124412.pdf . Bundesinstitut für Berufsbildung: "Berufsbildung 4.0 – Fachkräftequalifikationen und Kompetenzen für die digitalisierte Arbeit von morgen: Der Ausbildungsberuf 'Land- und Baumschinenmechatroniker/-in' im Screening“. Online: https://www.bibb.de/dienst/publikationen/de/10371 . Deutsches Handwerksinstitut: "Technologische Entwicklungen in der Landbautechnik". Online: https://hpi-hannover.de/Technologische_Entwicklungen_in_der_Landbautechnik_Ergebnisbericht_LBT-Forward.pdf?m=1657620513 . Deutscher Industrie- und Handelskammertag: "Statistik Ausbildung 2020". Online: https://www.dihk.de/resource/blob/47836/ddb56f26823aab09dbb3981afe04d6d3/statistik-ausbildung-2020-data.pdf . LandbauTechnik-Bundesverband e.V.: "Land- und Baumaschinenmechatroniker/in: Meister/in: Der Beruf für >starke Typen<". Online: https://www.landbautechnik.de/wp-content/uploads/RZ_142-23_Folder-Meister_230830-1_VIEW.pdf .

  • Technik
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Einfach mal ausprobieren! Schülerexperimente mit Microcontrollern im Physikunterricht

Kopiervorlage

Ziel des Arbeitsmaterials ist es Physiklehrkräften einen einfachen Einstieg in die Anwendung und Verwendung von Microcontrollern, wie Arduinos zu geben. Das begleitende Schülermaterial besteht aus Aufgaben zu den Versuchen mit steigendem Anforderungsniveau und einem kleinen Lexikon der Fachbegriffe. Anhand von drei Experimenten aus der Mechanik, welche die Lernenden selbst an einem sogenannten Breadboard beziehungsweise Entwicklerboard aufbauen, werden die Möglichkeiten einer elektronischen Messung deutlich. Der Einstieg in diese offensichtlich komplexe Thematik ist für die Schülerinnen und Schüler so niedrigschwellig wie möglich gestaltet. Beispielsweise werden keine Vorerfahrungen mit der Programmiersprache C++ benötigt. Der Programmiercode ist bereits vorhanden und kann kopiert und auf die entsprechenden Arduinos aufgespielt werden (Datei: schuelerexperimente-microcontroller-programmcode.ino ). Auch die Daten für den 3D-Druck der Halteklammern sind im Material enthalten. Alternativ können diese aber auch aus Holz gebaut werden. Zum Aufbau der Experimente wurde eine ausführliche Bild-für-Bild Anleitung geschrieben, sodass auch dies ohne Vorkenntnisse im Bereich der Elektronik umgesetzt werden kann. Zur Durchführung des Arbeitsmaterials ist es nicht von Bedeutung, dass Lehrkräfte programmieren lernen, sondern vielmehr, dass die Schülerinnen und Schüler frühzeitig mit Mikroelektronik und Programmierung in Kontakt kommen. Eine frühe Förderung von Schülerinnen und Schülern im Bereich der Mikroelektronik und Programmierung sowie der Verantwortung des Physikunterrichts in dieser Aufgabe ist von hoher Relevanz. Die gewählten Experimente heben sich durch präzise Zeitmessungen von bekannten Freihandexperimenten ab. Zunächst wird die Pendelfrequenz eines Fadenpendels mittels IR-Abstandsensor bestimmt. Im zweiten Experiment wird die Fallzeit einer Metallkugel auf Stecken von 10 cm bis 80 cm gemessen. Die Messung wird durch die Unterbrechung eines Stromkreises durch die Metallkugel gestartet, welche mit einer Halteklammer an einem sogenannten Fallrohr befestigt wird. Sobald die Kugel an einem IR-Sensor vorbeifällt, welcher mit einer Halteklammer an dem Fallrohr befestigt ist, wird die Messung beendet. Daran anknüpfend wird in dem dritten Experiment die Fallgeschwindigkeit der fallenden Kugel bestimmt. Dafür ist an der Halteklammer ein zweiter IR-Sensor im Abstand von 4 cm befestigt. Hiermit kann die Zeitdifferenz und damit die momentane Fallgeschwindigkeit mit Präzision bestimmt werden. Die Experimente wurden nicht nur gewählt, um den Teilnehmenden die Präzision von elektronischen Messverfahren anschaulich zu zeigen, sondern auch um das Repertoire der Schülerexperimente zum Thema „Beschleunigte Bewegungen“ der zehnten Jahrgangsstufe zu erweitern. Das Schülerinnen- und Schülermaterial begleitet die Lernenden mit kleinschrittigen Aufgaben durch die verschiedenen Experimente. Auch ein kleines Lexikon der Fachbegriffe ist im Arbeitsmaterial integriert. Fachkompetenz Die Schülerinnen und Schüler entdecken unterschiedliche Wege, die Gravitationskonstante g Erde zu messen. modellieren den Zusammenhang zwischen Schwingungsdauer, Gravitationskonstanten und Länge eines Pendels mithilfe eines Experiments. modellieren den Zusammenhang zwischen Fallzeit beziehungsweise Fallgeschwindigkeit, Gravitationskonstanten und Fallhöhe mithilfe eines Experiments. Medienkompetenz Die Schülerinnen und Schüler arbeiten mit Microcontrollern und führen Messungen durch. entdecken das Zusammenspiel aus Technik, Interpretation und Präsentation bei der Untersuchung einer wissenschaftlichen Fragestellung. halten die Ergebnisse ihrer Messungen strukturiert fest, interpretieren diese und ziehen Folgerungen aus diesen. Sozialkompetenz Die Schülerinnen und Schüler vergleichen, bewerten und ordnen ihre Messergebnisse ein. entdecken die verschiedenen Anforderungsbereiche des wissenschaftlichen Arbeitens, indem sie als Team eine Messung durchführen und auswerten.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Von der Idee zum Microchip

Interaktives / Kopiervorlage

Mikrochips sind in fast allen elektronischen Geräten zu finden, doch wie kommt man von der Idee zum Chip? Diese Reihe beleuchtet das Umsetzen einer Idee durch das Chip-Design auf einem FPGA und den Prozess des Testens, bevor die sehr teure Chipproduktion beginnt. Zum Abschluss wird noch ein Blick in die Zukunft der Elektronik geworfen. Unser Alltag ist von elektronischen Geräten geprägt. Fast alle enthalten heutzutage Mikrochips. Dies können Mikrocontroller, firmeneigene Chips oder Komponenten zur Verbindung der analogen mit der digitalen Welt sein. Doch wie entwickelt man überhaupt einen neuen Chip und wie kann man diese Entwicklung vor der Produktion testen? Eine Möglichkeit dazu sind Field Programmable Gate Arrays (FPGA) und die Hardwarebeschreibungssprache VHDL. Dass man Chips quasi "programmieren" und sich das Ergebnis dann anschauen kann, dies ist Thema dieser Unterrichtsreihe. Zum Schluss wird noch ein Ausblick in die Zukunft und ein Einblick in die Entwicklungslabore gewagt, wo die scheinbar ferne Zukunft teilweise schon Realität geworden ist. Außerdem können die Lernenden mithilfe der folgenden interaktiven Übung ihr Wissen über das FPGA testen. Chipdesign und Hardwarebeschreibung sind wichtige Themen für die Entwicklung unserer digitalen Welt. Was sich dahinter verbirgt und wie Ingenieure heutzutage arbeiten, dies soll schülergerecht vermittelt werden. Vorkenntnisse zu Logikgattern und deren Verknüpfungen sind hilfreich. Die Arbeitsblätter können im Unterricht auch einzeln und in beliebiger Reihenfolge eingesetzt werden. Die Themen sind an der Alltagswelt der Schülerinnen und Schüler orientiert. Die Neugierde, wie man von der Idee zur Produktion von Mikrochips kommt, die in vielen unserer elektronischen Geräte verbaut sind, lässt sich leicht wecken. Die interaktiven Übungen fragen das erworbene Wissen in spielerischer Weise ab. Besonders interessierte Schülerinnen und Schüler können die weiterführenden Links nutzen. Die Lehrkräfte benötigen keine weitreichende Vorbereitung. Die Themen lassen sich mit den Arbeitsblättern auch selbst erarbeiten. Für die interaktiven Übungen wird ein Internetzugang und ein Internetbrowser benötigt. Die Arbeitsblätter selbst können sowohl digital als auch in Papierform im Unterricht eingesetzt werden. Fachkompetenz Die Schülerinnen und Schüler durchdringen die Schritte von der Idee bis zum fertigen Chip. kennen das FPGA als Instrument zum Chipentwurf. kennen die grundlegenden Bestandteile eines FPGAs. berechnen den Strombedarf eines MOSFETs. bekommen einen Einblick in die Zukunft der Technik. Medienkompetenz Die Schülerinnen und Schüler recherchieren sinnvolle Quellen im Internet. werten verschiedene Quellen aus. verstehen technische Grafiken. Sozialkompetenz Die Schülerinnen und Schüler hinterfragen wirtschaftliche Aspekte der "neuen digitalen Welt". setzen sich mit der Globalisierung auseinander. entwerfen gemeinsam ein einfaches Chipdesign auf der Grundlage von LUTs. reflektieren den Gebrauch von Internetangeboten hinsichtlich des Energiebedarfs und des CO 2 -Fußabdrucks. diskutieren über Chancen und Gefahren der neuen Technologien.

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Miniroboter Einführungsworkshop: Arbeiten mit dem Ozobot

Unterrichtseinheit

In diesem Einführungsworkshop erlernen die Schülerinnen und Schüler anhand des Miniroboters Ozobot die Funktionsweise eines Computersystems sowie Grundkenntnisse des Codierens und Programmierens. "Roboter" faszinieren meistens. Das wird zur Motivation für eine Unterrichtseinheit genutzt, die ein Kompetenzbereiche übergreifendes Projekt umfasst. Die Organisation erfolgt als Workshop. Diese Groblernziele werden verfolgt: am anschaulichen Modell – dem Miniroboter Ozobot – grundlegend die Funktionsweise eines Computersystems zu betrachten, das Verhältnis von Menschen und Maschine zu beleuchten, Digitalisierung auf der Altersstufe der Schülerinnen und Schüler verständlich zu machen und auf elementarer Ebene in "Codierung" und "Programmierung" einzuführen. Als weiteres ausdrückliches Ziel wird die Umsetzung von weitgehend selbsterarbeitendem und teambezogenem Lernen angestrebt. Die Unterrichtseinheit ist in drei Blöcke gegliedert. Block 1 ist ein sachinhaltlicher und pädagogischer Vorspann für die Lehrpersonen beziehungsweise Workshopleitenden. Die Blöcke 2 und 3 beschreiben den Unterrichts-/Workshopablauf. Die unterschiedlichen Methoden, Sozialformen und insbesondere Medien stehen teilweise zur Wahl. Davon hängt ab, welche Ausstattung und welche Materialien im Workshop benötigt werden. Insofern stellt das Material keine "schlüsselfertige" Vorlage dar, sondern es muss gegebenenfalls eine zusätzliche Ausstattung hinzugenommen werden. Der Miniroboter als der Lehr- und Lerngegenstand Nahezu alle Schülerinnen und Schüler der Altersstufe haben Zugang zum Smartphone, Tablet oder ähnlichen digitalen Endgeräten und tätigen damit Problemlösungen. Zumeist setzen sie – was zweckdienlich ausreicht – mechanisch angelerntes Bedienerwissen ein. Der Workshop zielt auf verstehendes, systematisches und planvolles Problemlösen . Bewusst wird nicht versucht, das eingeschliffene Anwenden aufzubrechen und auf eine neue Stufe heben zu wollen. Sondern das Vorwissen wird abgeholt und genutzt, der eigentliche Lerninhalt aber über den neuen, sehr anschaulichen und motivierenden Zugang mit dem Miniroboter vermittelt. Das lässt sich bereits auf einfachem Niveau bis zum Verständnis von Algorithmen und elementarer Programmierung führen. Fachübergreifende Fragestellungen lassen sich gut integrieren. Die zugehörigen Materialien sind – dem Workshopverlauf folgend – in drei Blöcke gegliedert, die als PDF-Dateien zum Download zur Verfügung stehen: Block 1 – Einführung für Lehrpersonen/Workshopleitende, Ausstattung, Materialien Block 2 – Einstieg Block 3 – Erarbeitung und Anwendung, mit Ergebnissicherung Vorkenntnisse Von den Schülerinnen und Schüler werden keine konkreten Vorkenntnisse erwartet, sondern zumeist vorhandene und dabei sehr unterschiedliche Vorkenntnisse werden erfasst und sinnvoll integriert. Die Einführung in die Programmierung beginnt von Grund auf. Eine Ausnahme besteht, wenn über Medien Vorwissen erkundet und Quizze zur Lernsicherung genutzt werden. Dann sollten die Schülerinnen und Schüler diese Programme bereits kennen und nutzen können. Didaktische Analyse In Block 1 (Einführung durch Lehrkraft) wird der Inhalt der Unterrichtseinheit unter didaktischem Blickwinkel näher ausgeführt und erläutert. Methodische Analyse Unterrichtsmethoden und Sozialformen werden wie in jedem guten Unterricht zielführend eingesetzt und gewechselt, auch um die Motivation aufrecht zu erhalten. Darüber hinaus haben sie eine inhaltliche Bedeutung. Die starke Fokussierung auf Selbstlernen, das Team und eine Gemeinschaftsarbeit am Ende führt bereits auf eine in der heutigen IT-Berufs- und Arbeitswelt gängige Arbeitsorganisation hin. Sie ist davon geprägt, dass komplexe Vorhaben zerlegt und arbeitsteilig bearbeitet werden, was entsprechend organisiert wird (zum Beispiel in agilen Projekten). Fachkompetenz Die Schülerinnen und Schüler kennen und verstehen die grundlegende Funktionsweise eines Roboters und kennen Beispiele für die Anwendung von Robotern. können kritisch reflektieren, dass der Robotereinsatz Vorteile bringen und Gefahren bergen kann. wissen, dass sich Digitalisierung und Technik rasant weiterentwickeln und können die Begriffe Automatisierung und Miniaturisierung grundlegend einordnen. Medienkompetenz Die Schülerinnen und Schüler verstehen im Kern die Funktion eines Algorithmus und können Algorithmus, Programm und Codierung grundlegend unterscheiden. können zu einem einfachen Algorithmus die Befehlsfolge für den Ozobot erstellen und umsetzen/aufmalen (den Ozobot "visuell programmieren"). haben ein planvolles Vorgehen eingeübt, das sie bei ihrem Weiterlernen in anspruchsvollere Programmieraufgaben als Prinzip übernehmen können. Sozialkompetenz Die Schülerinnen und Schüler können selbstgesteuert und auch voneinander lernen. sind fähig zu zweit und/oder in kleinen Gruppen zu kommunizieren und zu arbeiten. können gemeinsam durch arbeitsteiliges Vorgehen eine Gesamtaufgabe lösen.

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Technik / Sache & Technik
  • Primarstufe, Sekundarstufe I

Hightech in Zeiten des Klimawandels und der digitalen Transformation

Fachartikel

In diesem Fachartikel geht es darum, wie die Digitalisierung, hier am Beispiel des Sanitär-Heizung-Klima-Handwerks (SHK), das Berufsbild unter Einsatz neuester Spitzentechnologien nachhaltig, innovativ und gesundheitsschonend macht, es zugleich vor neue Herausforderungen stellt und das Image der Handwerkerin und des Handwerkers nachhaltig verändert. Handwerk ist digital Das Handwerk wandelt sich und kontert dem oftmals vorherrschenden Bild eines zu anstrengenden, traditionalistisch-verankerten Berufes. Denn die Digitalisierung hat auch hier Einzug gehalten und verändert und erweitert das Berufsbild grundlegend. Das gilt sowohl für die handwerkstypischen Tätigkeitsbereiche als auch für organisatorische, kommunikative Hintergrund- und Kundenprozesse. Digitales Büro im Handwerk Laut einer Studie im Auftrag des Digitalverbands Bitkom und des Zentralverbands des Deutschen Handwerks (ZDH) betreiben fast 100 Prozent der befragten Betriebe eine Homepage und etwa Zweidrittel der Befragten setzen auf ein digitales Büro, um Kommunikationsabläufe zu vereinfachen und zu automatisieren. Etwas mehr als die Hälfte der Befragten nutzen bei der Arbeit Technologie, also etwa Cloud-Systeme. Und obwohl Dreiviertel der Befragten in der Digitalisierung sowohl eine Chance als auch gleichzeitig eine Notwendigkeit für die eigene Existenzsicherung sehen, stehen etwa Zweidrittel der 504 Befragten Handwerksbetriebe vor Herausforderungen in der Umsetzung. Gründe hierfür sind beispielsweise hohe Anschaffungskosten oder Überdimensionierung von digitalen Anwendungen für kleine Betriebe. Wie eine fortschreitende Digitalisierung in diesem Zusammenhang aussehen kann, zeigt das SHK-Handwerk. Digitale Transformation im SHK-Handwerk: Veränderte Arbeitsprozesse und Kundenbedürfnisse Das SHK-Handwerk geht die Wege in Zeiten des herausfordernden Wandels vom analogen zum digitalen Handwerksbetrieb. Betriebe passen sich hier zunehmend an die veränderten Arbeitsprozesse und Kundenbedürfnisse an. Die Digitalisierung findet so bereits in der Kundenansprache statt. Kundinnen und Kunden suchen in der Regel nicht länger analog nach einem Handwerksbetrieb, sondern tun dies in erster Linie über eine Suchmaschine im Internet. Handwerksbetriebe müssen ihre Kundenansprache dahingehend anpassen, um online gefunden werden zu können. Das SHK bietet hier zum Beispiel spezielle suchmaschinenoptimierte Webseiten an. Online-Kundenrezension werden in diesem Zusammenhang zu einem entscheidenden Wettbewerbsfaktor. Auch die Verwaltung, die Rechnungs- und Auftragsstellung erfolgt nicht mehr mit Stift und Papier, sondern digital. Das Zusammenspiel mit smarten Technologien mittels Tablets, Apps, Software, digitaler Geräte und Produkte im SHK vereinfacht und vernetzt diese Betriebsabläufe. Vielseitige digitale Planungsprogramme unterstützen zudem beispielsweise in Berechnungen, Zeichnungen und Planungen von Badezimmern – auch für Kundinnen und Kunden. Neue Assistenzsysteme machen das Handwerk effizienter und gesundheitsschonender In seinem 2018 ins Leben gerufenen Forschungsprojekt Handwerksgeselle 4.0 untersucht das SHK-Handwerk den Einsatz und die Entwicklung kognitiver und physischer digitaler Assistenzsysteme für den Beruf der Anlagenmechanikerin / des Anlagenmechanikers für Sanitär-, Heizungs- und Klimatechnik. Die Arbeit kann durch die digitalen Assistenztools für die Handwerkerin und den Handwerker entlastender und automatisierter werden. Beispielsweise können schwer einsehbare Bereiche während eines Arbeitseinsatzes mit einer digitalen Brille sichtbar gemacht werden: Ist zum Beispiel eine Hebelvorrichtung in einer Sanitäranlage nur schwerlich einsehbar und bedingt daher das Verdrehen des Körpers, so verfügt eine digitale Brille über eine integrierte Kamera, die das Aufgenommene direkt auf die Brille projiziert. Auch Videos, zum Beispiel mit Informationen zur Installation von Sanitär-Einrichtungen, können auf die Datenbrille übertragen werden. Assistenzsysteme machen Arbeitsprozesse auf diese Weise leichter und gesundheitsschonender und können sogar eine schnellere Integration von neuen Arbeitskräften per Quereinstieg oder aus dem Ausland fördern. Arbeitsprozesse werden auch mit digitalen Werkzeugen vereinfacht, zum Beispiel mittels digitaler Pressen und Bohrmaschinen. Darüber hinaus kann heutzutage die physische Arbeit unmittelbar am Körper unterstützt werden, beispielsweise durch das Tragen eines Exoskeletts. Bei diesem handelt es sich um eine äußere Stützstruktur, die an der Handwerkerin / am Handwerker angebracht wird und sie/ihn bei ihren/seinen Bewegungen unterstützt. Bei längerem Arbeiten mit ausgestreckten Armen – zum Beispiel bei Rohrinstandsetzungen – unterstützt das Exoskelett, indem es müde Arme stabilisiert und gleichzeitig für eine schnellere Arbeitsabwicklung sorgt (Modul e.V. 2020). Mit dem Smart Home in Richtung Nachhaltigkeit Doch nicht nur die Arbeitsprozesse werden in Zukunft immer digitaler, auch das Angebot an sich wird oder ist es schon. Mit dem Schlagwort "Smart Home" wird die intelligente, digitale Vernetzung verschiedener Elemente im Haus bezeichnet, die dann vom Endverbraucher zentral elektronisch gesteuert werden kann. Dem SHK-Handwerk kommt hier eine Schlüsselposition zu. Gerade in Zeiten des Klimawandels und der Energiekrisen müssen neue, ressourcenschonende und kostengünstige Methoden entwickelt werden: Heizung und Photovoltaikanlage, die zusammenarbeiten; überschüssige Energie aus der Photovoltaikanlage, die zum Heizen genutzt wird, wodurch Energiekosten um fast 20 Prozent gesenkt werden können. Im SHK-Handwerk werden diese Technologien vermehrt eingesetzt (Wagnitz 2020). Weitere Chancen sowie Herausforderungen des digitalen Wandels im Handwerk Die Installation solcher Systeme verbindet oft Fachwissen aus mehreren Handwerksbereichen, zum Beispiel aus dem SHK- und dem Elektrohandwerk. Derartige handwerksübergreifende Kompetenzen könnten daher zukünftig in die Ausbildungen beider Handwerke implementiert und die Zusammenarbeit zwischen beiden Berufen gefördert werden. Das SHK-Handwerk reagiert bereits jetzt auf diese Notwendigkeit und bietet Weiterbildungen speziell zum "Smart Home" an (Akademie des Handwerks). Hier liegt eine besondere Chance der Digitalisierung: Junge Menschen können in Zeiten des Fachkräftemangels über digitale Technologien für den Beruf begeistert werden. Auch die Kompatibilität zwischen den verschiedenen Lösungen aus beiden Bereichen muss gewährleistet sein. Die Heizung des Herstellers A muss auch mit dem digitalen Bildschirm des Herstellers B "sprechen", damit das ganze System funktionieren kann (Wagnitz 2020). Aber: Intersektionalität kann Positives und Neues für alle Beteiligten hervorbringen. Darüber hinaus fallen bei den technologiebasierten Systemen des Smart Homes Daten an. Was passiert mit den anfallenden Daten und wie können diese sicher vor Missbrauch geschützt werden? Systeme mit einer hohen Eigensicherheit müssen hier also Standard werden genauso wie die von den Betrieben verwendete Software. Trends gehen hier in Richtung All-in-One-Lösungen. Fazit Die Handwerksbranche durchlebt grundlegende Wandlungsprozesse aufgrund der digitalen Transformation. Dabei gibt es viele Herausforderungen zu bewältigen und Chancen zu ergreifen. Die hier vorgestellten Assistenzsysteme und Digitalisierungsprozesse am Beispiel des SHK-Handwerks zeigen Potenziale auf, um berufliche Abläufe und Tätigkeiten effizienter, automatisierter und gesundheitsfördernder zu gestalten. Zugleich kann so die Attraktivität des Berufs für Schülerinnen und Schüler in der Phase der Berufsorientierung gesteigert werden, da traditionelles Handwerk auf neueste Technologien und handwerksübergreifende Bildungs- und Arbeitsbereiche trifft. Schülerinnen und Schüler, die nicht nur handwerklich begabt, sondern auch an technologischen Entwicklungen in unterschiedlichen Fachbereichen interessiert sind, kann ein handwerklicher Beruf neue Perspektiven in der Berufsfindung eröffnen. Verwendete Literatur Akademie des Handwerks: "Smart Home für das SHK-Fachhandwerk". Klima Heizung Sanitär . Online: https://www.zvshk.de/themen/nachwuchs/ . Handwerksgeselle 4.0: "Handwerksgeselle 4.0 – Die Zukunft gestalten". Online: https://www.hwg40.de/ . Handwerksgeselle 4.0: "Kognitive Assistenz". Online: https://www.hwg40.de/hintergrundinfos/kognitive-assistenz . Modul e.V.: "Tradition trifft Moderne: Handwerk 4.0 – Digitalisierung im Sanitär?, Heizungs- und Klimatechnikhandwerk". Modul e.V. – Förderverein Modernes Lehren und Lernen in Schule, Aus- und Weiterbildung. Online: https://www.modul-berlin.de/netzwerk-berufspraxis/handwerk-4-0/digitalisierung-im-shk-handwerk/ . Wagnitz, Matthias: "Smarte neue Welt". SBZ Sanitär.Heizung.Klima. Online: https://www.sbz-online.de/heizung/smarte-neue-welt . Zentralverband Sanitär-Heizung-Klima: Digitalisierung im SHK-Handwerk. Online: https://www.zvshk.de/digital/ .

  • Technik
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Topologische Optimierung und bionisches Design

Unterrichtseinheit

In dieser Unterrichtseinheit erhalten die Lernenden erste Einblicke in topologische Optimierungen und Bionik. Strukturen aus der Natur dienen als Vorbild für bionisches Design, das sowohl stabil als auch materialsparend ist. Nach einer Einführung in das Thema am Beispiel eines Fahrradrahmens, konstruieren Schülerinnen und Schüler Stifteschälchen im bionischen Design mit einem CAD-Programm. Ausgehend von der Frage, wie Maschinenbau einen Beitrag zum Erreichen von Klimazielen schaffen kann, werden materialsparende, leichte, aber trotzdem stabile Designs von Fahrradrahmen betrachtet. Hierbei dienen Strukturen aus der Natur als Vorbilder für bionisches Design. Im Rahmen einer Internet-Recherche informieren sich die Schülerinnen und Schüler darüber, welche bionischen Designs für Fahrradrahmen bereits vorhanden sind. Mit dem Verfahren der topologischen Optimierung können solche materialsparenden Strukturen digital konstruiert werden. Andererseits kann auch mit der analogen Methode der Zugdreiecke durch das gezielte Hinzufügen von Material Stabilität geschaffen werden. Die Schülerinnen und Schüler werden selbst aktiv, indem sie ein Stifteschälchen planen und mithilfe eines CAD-Programms (zum Beispiel mit TinkerCAD) schlussendlich für den 3D-Druck designen. Um hierfür anschaulich Elemente des bionischen Designs zu erfahren, wird die Grundform der Schälchen aus Matsch nachgebaut. Hierbei entdecken die Schülerinnen und Schüler, dass Übergänge – beispielsweise zwischen Wand und Boden – gerundet sind und sich der Querschnitt der Wände von unten nach oben verjüngt. Diese Elemente werden im Design des Schälchens aufgegriffen. Zusätzlich kann Material nach der Idee der topologischen Optimierung durch das Einfügen von Löchern in den Wänden des Schälchens eingespart werden. Hierfür wird mit dem intuitiven Begriff des Kraftflusses gearbeitet, der bei dem Lastfall, dass ein Buch auf den oberen Rand des Schälchens fällt, entsteht. Die Unterrichtseinheit ist thematisch in sechs Lernmodule und zwei Submodule eingeteilt. Fachkompetenz Die Schülerinnen und Schüler lernen die Prinzipien der topologischen Optimierung und des bionischen Designs kennen und wenden diese an. optimieren ausgehend von ersten Entwürfen ihre Stifteschälchen unter den Aspekten der topologischen Optimierung und des bionischen Designs. Medienkompetenz Die Schülerinnen und Schüler konstruieren unter Berücksichtigung bionischer Design-Elemente kreativ mithilfe eines CAD-Programms (zum Beispiel TinkerCAD). nutzen das Internet eigenständig für Recherchen zum bionischen Design und der topologischen Optimierung. erarbeiten aktiv mit Hilfe von Matsch bionische Design-Elemente.

  • Technik / Sache & Technik / Physik / Astronomie / Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Unterrichtsmaterial und News für das Fach Technik

Hier finden Lehrkräfte der Sekundarstufen I und II kostenlose und kostenpflichtige Arbeitsblätter, Kopiervorlagen, Unterrichtsmaterialien und interaktive Übungen mit Lösungsvorschlägen zum Download und für den direkten Einsatz im Technik-Unterricht, in Vertretungsstunden oder der Technik-AG. Ob Materialien zu technischem Zeichnen, Robotik, digitale Technologien oder Werkstoffkunde: Dieses Fachportal bietet Lehrerinnen und Lehrern jede Menge lehrplanorientierte Unterrichtsideen, Bildungsnachrichten sowie Tipps zu Apps und Tools für ihren Technikunterricht an Gymnasien, Gesamt-, Real-, Haupt- und Mittelschulen. 

Nutzen Sie unsere Suche mit ihren zahlreichen Filterfunktionen, um einfach und schnell lehrplanrelevante Arbeitsmaterialien für Ihren Unterricht zu finden.

ANZEIGE

Aktuelle News für das Fach Technik

Premium-Banner