Gravitation als Linse – Lichtablenkung am Rand der Sonne

Unterrichtseinheit
 Premium  |  Einzelkauf

Diese Unterrichtseinheit thematisiert die Sonnenfinsternis-Expedition im Jahre 1919, welche die Lichtablenkung von Sternenlicht am Rand der Sonne vermessen konnte. Damit gelang eine erste experimentelle Bestätigung der Allgemeinen Relativitätstheorie, was Alberst Einstein zu großer Popularität verhalf.

Als Premium-Mitglied nutzen


Jetzt kaufen

Das Produkt wurde dem Warenkorb hinzugefügt.

14,99 €

Beschreibung der Unterrichtseinheit

Fast 100 Jahre später stand die Relativitätstheorie erneut im Fokus öffentlichen Interesses, denn mit dem direkten Nachweis von Gravitationswellen konnte eine weitere, wichtige Vorhersage der Theorie betätigt werden. Die Materialien nehmen Bezug auf ein Erklärvideo aus der Mediathek der Lindauer Nobelpreisträgertagungen (Mini-Lectures). Zu diesem Video wurden zwei weitere Unterrichtseinheiten ausgearbeitet, welche die erste indirekte Bestätigung von Gravitationswellen mithilfe eines Pulsars (1974) sowie den ersten direkten Nachweis dieser Wellen mithilfe von Laser-Interferometern (2015) zum Inhalt haben.

Die Unterrichtseinheit nimmt die historischen Sonnenfinsternis-Expeditionen von 1919 (Principe und Sobral) als Ausgangspunkt, um ein zentrales Phänomen moderner Physik und Astronomie zu untersuchen: die Ablenkung von Sternenlicht im Gravitationsfeld der Sonne. Die Lernenden verstehen, warum diese Messkampagne als Entscheidungsexperiment gilt: Während die klassische Physik nach Newton grundsätzlich eine Lichtablenkung nahe großer Massen erwartet, sagt die Allgemeine Relativitätstheorie eine deutlich stärkere Ablenkung voraus. Genau diese Differenz macht die Expedition wissenschaftlich so bedeutsam.

Im Zentrum steht nicht nur das "Was", sondern das "Wie" wissenschaftlicher Erkenntnis: Die Schülerinnen und Schüler recherchieren Hintergründe, Ablauf und Ergebnisse der Expedition, ordnen Quellen ein und arbeiten heraus, welche Rolle Messbedingungen, Auswertung und Unsicherheiten spielen. Darauf aufbauend leiten sie zunächst die klassische Betrachtung her und berechnen anschließend die erwarteten Ablenkwinkel nach Newton und nach der relativistischen Näherungsformel. So wird sichtbar, wie klein der Effekt tatsächlich ist – und warum die damalige Messung trotz ihrer Eleganz methodisch anspruchsvoll bleibt.

Ein weiterer Schwerpunkt liegt auf der quantitative Auswertung: Mit Hilfe der Fernrohrbrennweite bestimmen die Lernenden Abbildungsmaßstäbe, berechnen die zu erwartende Verschiebung auf der Fotoplatte und werten Messdaten zu Sternpositionen grafisch aus. Abschließend diskutieren sie die Aussagekraft der Ergebnisse im Hinblick auf die Eingangshypothese und reflektieren, was ein "Beleg" in den Naturwissenschaften bedeutet.

Als anschauliche Ergänzung wird das  Gummituch-Modell genutzt, um die Idee der Raumzeitkrümmung und die "Linsenwirkung" von Massen niedrigschwellig zu visualisieren. Über den Einstieg mit einem Video zu Gravitationswellen wird zudem eine Brücke zu späteren Bestätigungen der Relativitätstheorie geschlagen und die Einheit in einen größeren physikalischen Kontext eingebettet.

Unterrichtsablauf

Inhalt
Sozialform / Material

Didaktisch-methodischer Kommentar

Die im Jahr 1919 durchgeführten Sonnenfinsternis-Expeditionen nach Principe (Westafrika) und Sobral (Brasilien) hatten den Charakter eines "Experimentum Crucis" – eines Entscheidungsexperiments. Auch die klassische Physik nach Newton sagt eine Ablenkung eines Lichtstrahls voraus, wenn dieser dicht an einer großen Masse, wie zum Beispiel die der Sonne, vorbeigeht. Einstein konnte aber aus seiner Allgemeinen Relativitätstheorie 1915 ausrechnen, dass die Lichtablenkung (in erster Näherung) doppelt so groß sein müsste, wie sie sich aus der klassischen Physik ergibt. Die experimentelle Bestimmung des Ablenkwinkels sollte also entscheiden, ob die Relativitätstheorie die allgemeingültige Beschreibung von Gravitation darstellt. Vom Standpunkt der Physikdidaktik stellt die damalige Situation ein Paradebeispiel dar, wie wissenschaftliche Erkenntnisse gewonnen und abgesichert werden. Die Materialien zu dieser Unterrichtseinheit sollen dies widerspiegeln. Die Idee, die Lichtablenkung mithilfe der Verschiebung der Sternpositionen bei einer Sonnenfinsternis nachzuweisen, ist bestechend einfach – die Durchführung allerdings aufgrund der extrem kleinen Effekte äußerst schwierig. Auch diese Problematik wird in den Arbeitsblättern thematisiert, indem die Lernenden berechnen, wie groß die Verschiebungen der Sternpositionen auf den Fotoplatten nach Einstein tatsächlich sein sollten. Nur so lässt sich ermessen, wie schwierig die Auswertung und Interpretation der Messungen seinerzeit waren.

Methodische Analyse

Ein Erklär-Plakat, das 1919 in einer populären Zeitschrift (Illustrated London News) die physikalischen Hintergründe und Zusammenhänge der Expedition darstellte, dient den Schülerinnen und Schülern als Anlass, Informationen über die damalige Forschungsreise zu sammeln und zusammenzustellen. Aus heutiger Sicht ist es erstaunlich, wie gut man damals bereits in der Lage war, Wissenschaft journalistisch aufzuarbeiten und den Bürgern näher zu bringen. Im Weiteren rechnen die Lernenden den Ablenkwinkel am Sonnenrand konkret aus und werten die Positionen von sieben Sternen, die auf den Fotoplatten sichtbar wurden graphisch aus, um dann eine Entscheidung für oder wider die Hypothese von Einstein treffen zu können.

Vorkenntnisse

Die Lernenden sollten das Gravitationsgesetz von Newton kennen. Die Formel für die Lichtablenkung ist nicht schwierig und wird fertig angegeben. Allerdings stellt der Umgang mit den unterschiedlichen Begriffen bei der Berechnung von Winkeln (Bogensekunden, Grad, Radiant, Bogenmaß) die Schülerinnen und Schüler erfahrungsgemäß vor Probleme. Daher werden verhältnismäßig große Vorgaben diesbezüglich in den Materialien gemacht. Vermutlich ist aber auch Lehrkräfterhilfe an der einen oder anderen Stelle sinnvoll und notwendig.

Schon Premium-Mitglied oder Material einzeln erworben?
Noch kein Premium-Mitglied?
Nur diesen Content freischalten?

Unterrichtsmaterial "Gravitation als Linse" zum Download (PDF)

Unterrichtsmaterial "Gravitation als Linse" zum Download (Word)

Vermittelte Kompetenzen

Fachkompetenz

Die Schülerinnen und Schüler…

  • erkennen, dass die Allgemeine Relativitätstheorie von der klassischen Physik abweicht, sobald die gravitativ wirkenden Massen groß oder die Abstände zu diesen klein werden.
  • berechnen physikalische Größen.
  • werten Messwerte aus.
  • interpretieren und bewerten Versuchsergebnisse.
  • erklären physikalische Phänomene und Versuchsanordnungen im Sachzusammenhang.
  • stellen die wissenschaftliche Bedeutung von physikalischen Erkenntnissen heraus.

Medienkompetenz

Die Schülerinnen und Schüler…

  • können die im Video dargestellten physikalischen Inhalte nach Relevanz filtern und strukturiert wiedergeben, sowie Informationen gezielt herausstellen.
  • können Texte in gedruckter und digitaler Form (Internet) nach bestimmten Fragestellungen hin untersuchen und die relevanten Informationen herausarbeiten.

Sozialkompetenz

Die Schülerinnen und Schüler

  • arbeiten konstruktiv und kooperativ in Paar- oder Gruppenarbeit.
  • diskutieren in Paar- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse.
  • stellen Ergebnisse der Paar- und Gruppenarbeit angemessen und verständlich im Plenum dar.
ANZEIGE

Autor

Portrait von Matthias Borchardt
Matthias Borchardt

Zum Profil