• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
Sortierung nach Datum / Relevanz
Kacheln     Liste

Polarlichter - Mythen & Fakten rund ums "Himmelsfeuer"

Unterrichtseinheit

Bei der Beschäftigung mit der Aurora wird man schnell feststellen, dass die Naturerscheinung etwas Magisches hat, das alle Schülerinnen und Schüler in ihren Bann zieht - auch wenn im Unterricht die Video- oder Fotokonserve aus dem Internet die reale Begegnung ersetzen muss. "Es scheint als eine große, aus der Ferne gesehene Flamme von einem starken Feuer; von derselben schießen, dem Anschein nach in die Luft hinauf scharfe Spitzen von ungleicher Höhe und sehr unbeständig, so dass bald die eine, bald die andere höher ist, und so schwebt dieses Licht wie eine leuchtende Lobe" (Norwegischer Königsspiegel, 1250). Eines haben alle Beobachter von Polarlichtern - sei es in der Antike, dem Mittelalter oder in der Neuzeit - gemeinsam: Sie sind fasziniert und beeindruckt zu gleich. Die Magie der Naturerscheinung in das Klassenzimmer zu transferieren ist natürlich schwieriger, als den Funken bei einer realen Begegnung überspringen zu lassen. Dennoch kann über die multimediale Begegnung der Schülerinnen und Schüler mit diesem kosmischen Spektakel die Faszination geweckt werden. Es bedarf dabei keiner großen didaktischen Kunststücke, um eine Klasse zur unterrichtlichen Auseinandersetzung mit der Thematik zu motivieren. Allein die Magie der Aurora leistet hier große didaktische Dienste. Das Thema Polarlichter bietet diverse Anknüpfungspunkte für den Unterricht: Bei der Behandlung der Polarregionen (Geographie) sowie der der Entstehung des Erdmagnetfeldes (Physik) kann der "Motivations-Joker" gezogen werden. Auch die Physik der Sonne (Sonnenaktivität, Sonnenwind) kann direkt zum Polarlicht führen. Da das Weltraumteleskop Hubble auch auf anderen Planeten (Jupiter, Saturn) Polarlichter beobachtet und davon eindrucksvolle Bilder geschossen hat, sollten auch das "außerirdische" Polarlicht betrachtet werden. Hinweise zum Unterrichtsverlauf und Materialien Nordlicht-Videos und historische Texte bieten ideale Einstiegsmöglichkeiten in die Thematik. In der Erarbeitungs- und Festigungsphase kommen Arbeitsblätter zum Einsatz. Die Schülerinnen und Schüler sollen Erklärungsversuche vergangener Kulturen nachvollziehen und bewerten können. eigene (mythische, nicht naturwissenschaftliche) Konzepte zur Erklärung der Himmelsbeobachtung entwickeln können. in der Lage sein, das (naturwissenschaftliche) Grundprinzip der Entstehung von Polarlichtern erklären zu können. die unterschiedlichen Farben von Polarlichtern begründen können. Thema Polarlichter - Mythen & Fakten rund um das "Himmelsfeuer" Autor Raimund Ditter Fach Geographie (Astronomie, Physik) Zielgruppe Klasse 8-10 Zeitraum 2-4 Stunden Technische Voraussetzungen Präsentationsrechner mit Beamer, Player für das Abspielen der Aurora-Videos Texte und Bilder zur "leuchtenden Lobe" Zur Einstimmung eignet sich das Eingangszitat aus dem "Norwegischen Königsspiegel" aus dem Jahr 1250 (siehe Startseite der Unterrichtseinheit). In diesem Zusammenhang können die Schülerinnen und Schüler gefragt werden, was der Autor hier wohl zu Gesicht bekommen hat beziehungsweise welche Erscheinung er beschreiben könnte. Alternativ kann mit einem Brainstorming zu dem theatralischen Begriff "Himmelsfeuer" begonnen werden. In beiden Fällen sollte, um eine naturwissenschaftliche Fragehaltung bei den Lernenden zu wecken, die Präsentation eines solchen "schwebenden Lichtes" in Form einer Videosequenz über den Beamer erfolgen. Im Internet finden sich zahlreiche geeignete Film- und Fotomaterialien. Vermutungen der Lernenden Nach der Darbietung der Filmsequenz steht die Frage nach der Entstehung dieser Himmelserscheinung im Zentrum des Unterrichts. Zu Beginn der Erarbeitungsphase bietet es sich an, Vermutungen der Schülerinnen und Schüler einzuholen. Im Sinne eines konstruktivistischen Vorgehens sollte diese Annahmen frei geäußert und noch nicht bewertet werden. Erklärungsversuche aus Antike und dem Mittelalter Die Lernenden werden sehr rasch unterschiedlichste Erklärungsmodelle anbieten - hier bietet es sich an, ihnen Erklärungsversuche aus der Antike und aus dem Mittelalter vorzustellen (aurora_1_mythen.pdf). Im Anschluss daran ist es sinnvoll, diese Erklärungsversuche von den Lernenden bewerten zulassen, um sie gegebenenfalls zu falsifizieren. Fantasie spielen lassen Um das Geheimnis der Aurora naturwissenschaftlich zu lüften, erhalten die Schülerinnen und Schüler das zweite Arbeitsblatt (aurora_2_entstehung.pdf) mit dem entsprechenden Informationstext. Zur Illustration wird eine NASA-Grafik verwendet (Abb. 1). Als weitere multimediale Informationsquelle bietet sich einer der oben genannten Unterrichtsfilme oder der auf dem Arbeitsblatt angegebene Link zum Alpha-Centauri Film "Nordlicht" an. Im Anschluss an die Informationssichtung bearbeiten die Lernenden in Einzel- oder Partnerarbeit das dritte Arbeitsblatt (aurora_3_entstehung.pdf). Zur Ergebniskontrolle bietet es sich an, das dritte Arbeitsblatt per Overhead-Projektor oder Beamer zu projizieren, um dann mit den Schülerinnen und Schülern gemeinsam die Ergebnisse zu vergleichen und aufgeworfene Fragen zu beantworten. Das vierte Arbeitsblatt (aurora_4_farben.pdf) dient schließlich der Vertiefung und thematisiert die unterschiedliche Farbgebung der Polarlichter sowie deren Farbübergänge. Hier besteht die Möglichkeit, die Lernenden Polarlichter aus Bildergalerien im Internet heraussuchen und erklären zu lassen. Lassen Sie Ihre Schülerinnen und Schüler auf jeden Fall auch aus der ungewohnten Orbit-Perspektive einen Blick auf die irdische Aurora werfen. Erwähnenswert (und zeigenswert) sind auch Aurora-Erscheinungen anderer Planeten (siehe Links und Medien zum Thema ). So konnte das Weltraumteleskop Hubble die Dynamik von Saturns Aurora einfangen. Auch auf Jupiter beobachtete das Weltraumteleskop Aurora-Erscheinungen. Antarctica Fenster zum Universum - Das Geheimnis der Aurora Mediennummer VHS: SWR 4285927 (deutschsprachig) Antarctica Window of the universe - The mystery of the aurora Mediennummer DVD: SWR 4681804 (englischsprachig)

  • Geographie / Jahreszeiten / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Erste Schritte zur Orientierung am Sternhimmel

Unterrichtseinheit

Die kostenfreie Planetarium-Software Stellarium und die hier bereit gestellten Materialien zum Basteln einer drehbaren Sternkarte bilden eine ideale Grundlage für den Einstieg in die Orientierung am Himmel.Viele Menschen, vor allem Kinder, sind vom Anblick des nächtlichen Sternenhimmels fasziniert. Nur wenige kennen jedoch die wichtigsten Sternbilder und die Möglichkeiten, deren Kommen und Gehen am Himmel zur räumlichen und zeitlichen Orientierung zu nutzen. Diese Unterrichtseinheit stellt Methoden und Materialien für eine solche Orientierung bereit. Im Unterricht entdecken die Schülerinnen und Schülern bei der spielerischen Arbeit mit der Software Stellarium die Sternbilder und die - je nach Jahreszeit und Beobachtungsort - unterschiedlichen Himmelsanblicke. Unterstützt von der drehbaren Sternkarte werden bei späteren Beobachtungen am realen Nachthimmel diese Aspekte wieder entdeckt. Mit älteren Schülerinnen und Schülern können sowohl mit Stellarium als auch mit drehbaren Sternkarten Betrachtungen zum äquatorialen Himmelskoordinatensystem angestellt werden. Stellarium Die Open Source Software Stellarium ist ein einfach zu bedienendes Hilfsmittel für erste Schritte zur Orientierung am Sternhimmel. Das Programm erlaubt es zum einen, die zufällige Anordnung der Sterne durch die bekannten Sternbilder mit der Merkhilfe "Sternbildlinien" zu strukturieren. Zum anderen ermöglicht es Stellarium, Veränderungen des sichtbaren Himmelsausschnitts in Abhängigkeit von der Beobachtungszeit und vom Beobachtungsort zu erkennen. Daneben kann Stellarium das in der Astronomie oft verwendete äquatoriale Himmelskoordinatensystem veranschaulichen. Die Drehbare Sternkarte zum selber Basteln Die Orientierung bei realen nächtlichen Himmelsbeobachtungen erfolgt zumeist nicht mittels Computer, sondern mit einer drehbaren Sternkarte. Eine solche Sternkarte wird von den Schülerinnen und Schülern im Verlauf der beschriebenen Unterrichtseinheit selbst hergestellt, ihre Handhabung wird geprobt, und die mit Stellarium gewonnenen Erkenntnisse werden am Original-Sternhimmel wieder entdeckt und nachvollzogen. "Trockenübungen" mit Stellarium Mithilfe von Stellarium "experimentieren" Schülerinnen und Schüler mit dem Himmel, lernen Sternbilder und das "bewegliche äquatoriale Koordinatensystem" der Himmelskugel kennen. Orientierung am Himmel mit der drehbaren Sternkarte Hier finden Sie Kopiervorlagen, mit denen Schülerinnen und Schüler eine eigene Sternkarte basteln können, sowie eine Bauanleitung und Hinweise zur Nutzung der Karte. Die Schülerinnen und Schüler sollen sich in die Planetarium-Software Stellarium einarbeiten. Sternbilder kennen lernen und diese später mit einer drehbaren Sternkarte am Abendhimmel wieder finden. den mit den Jahreszeiten wechselnden Himmelsanblick mit Stellarium entdecken und diesen Wechsel mit der drehbaren Sternkarte nachvollziehen. die Veränderung des Sternhimmels beim Wechsel des Beobachtungsortes erfahren. eine drehbare Sternkarte aus einfachen Vorlagen selbst herstellen. das Gradnetz des äquatorialen Koordinatensystems am Himmel kennen lernen. Thema Erste Schritte zur Orientierung am Sternhimmel Autor Peter Stinner Fächer Naturwissenschaften ("Nawi"), Geographie, Klassenprojekte Zielgruppe Klasse 5-10 Zeitraum etwa 2-3 Unterrichtsstunden Technische Voraussetzungen Computer für Einzel- und Partnerarbeit, im Idealfall Präsentationsrechner mit Beamer; Laminiergerät, Schere, Locheisen oder Lochzange (Durchmesser 4 mm) zur Herstellung drehbarer Sternkarten Software Stellarium (Planetarium-Software, kostenfreier Download) Den Tag zur Nacht machen Die Software Stellarium ist im Wesentlichen intuitiv bedienbar. Die wichtigsten Funktionen und die Menüsteuerung stellen wir Ihnen kurz im Bereich Fachmedien vor (siehe Stellarium ? ein virtuelles Planetarium für die Schule ). Nach dem Start zeigt Stellarium den der Systemzeit des Rechners entsprechenden Himmelsanblick. In der Schule wird dies normalerweise der Taghimmel sein. Die Sonne bewegt sich mit "realistischer" Geschwindigkeit, also sehr langsam. (Mehrfaches) Betätigen von Button 19 im unteren Menü der Software (Abb. 1, zur Vergrößerung bitte anklicken) beschleunigt die Himmelsbewegung. Mit Button 17 stellt man die Geschwindigkeit wieder auf "normal". Die Schülerinnen und Schüler werden sehen, wie Gestirne im Osten aufgehen, ihren Bahnbogen am Himmel beschreiben und im Westen untergehen. Mit Button 16 lässt sich dieser Vorgang rückwärts abspulen, Nummer 18 setzt den Himmelsanblick zurück auf die Systemzeit des Rechners. Zirkumpolarsterne im Visier Verkleinert man den Maßstab der Himmelsansicht (mit dem Scrollrad der Maus nach unten scrollen), dann erscheinen auch Sterne in größerer Höhe über dem Horizont. Die Schülerinnen und Schüler werden sehen, dass manche Sterne nie untergehen: die Zirkumpolarsterne. Bei unserer geographischen Breite von etwa 50 Grad sind dies alle die Sterne, die um weniger als 50 Grad vom Polarstern entfernt sind. Alles dreht sich um den Polarstern Um den kompletten sichtbaren Himmel darzustellen, scrollt man zunächst nach unten, bis das Bild sich nicht weiter verkleinert. Ziehen des Mauszeigers (bei gedrückter linker Maustaste!), ausgehend von der Bildschirmmitte um wenige Zentimeter nach unten, liefert dann die Projektion des gesamten Himmels auf einen Kreis. Man beschleunigt die Himmelsbewegung und erkennt sofort, dass der komplette Sternhimmel sich um einen über dem Nordhorizont befindlichen Stern dreht - den Polarstern. Der Polarstern ist entgegen landläufiger Meinung nicht der hellste Stern am Himmel und für Anfänger erst einmal gar nicht so leicht aufzufinden. Mithilfe der auffälligen Sternbilder Großer Wagen und Kassiopeia, die beide zirkumpolar und deshalb in jeder Nacht sichtbar sind, gelingt dies jedoch meist problemlos (Abb. 2). Der Polarstern weist in sehr guter Näherung die geographische Nordrichtung. Die Drehung der zirkumpolaren Sternbilder Kassiopeia und Großer Wagen wird sehr schön durch eine Animation bei Wikimedia Commons dargestellt, die auch als Grundlage für Abb. 2 verwendet wurde: Wikimedia Commons: Zirkumpolar ani.gif Animiertes GIF zur Bewegung der zirkumpolaren Sterne Sternbilder sind zufällige Anordnungen von Sternen im dreidimensionalen Raum, projiziert an die Oberfläche der scheinbaren "Himmelskugel". Sterne eines Sternbildes haben in der Regel ganz unterschiedliche Entfernungen von der Erde. Einige der wichtigsten Sternbilder begegneten uns oben bereits im Zusammenhang mit dem Aufsuchen des Polarsterns: Kassiopeia, Großer Wagen und Kleiner Wagen. Die beiden letzteren sind Teile der größeren Sternbilder Großer Bär und Kleiner Bär. Mit Button 1 in der unteren Menüleiste von Stellarium (siehe Abb. 1) lassen sich so genannte "Sternbildlinien" als Strukturierungs- und Merkhilfen einblenden. Button 2 liefert zusätzlich die Sternbildnamen und mit Nummer 3 kann man figürliche Darstellungen der Sternbilder einblenden. Der Wechsel der Jahreszeiten am Himmel Über den zweiten Button von oben in der linken Menüleiste (Abb. 3) kann man die Beobachtungszeit und damit den Himmelsanblick mit den Jahreszeiten variieren. Das unterschiedliche Aussehen des Sternenhimmels in verschiedenen Jahreszeiten, in denen verschiedene Konstellationen den Südhimmel dominieren, wird unmittelbar einsichtig: Frühling* Der Frühlingshimmel wird vom Sternbild Löwe geprägt. *Sommer* Das "Sommerdreieck" mit den hellsten Sternen aus Leier (Wega), Schwan (Deneb) und Adler (Atair) dominiert den Nachhimmel im Sommer. *Herbst* Die "Andromeda-Kette" mit dem "Pegasus-Quadrat" prägt den Anblick des Nachthimmels im Herbst. *Winter Neben dem Sternbild Orion sind die hellen Sterne des "Wintersechsecks" sehr auffällig (Capella im Fuhrmann, Aldebaran im Stier, Rigel im Orion, Sirius im Großen Hund, Prokyon im Kleinen Hund, Kastor und Pollux in den Zwillingen). Reise zu fernen Orten mit Stellarium Die Erklärung dieser jahreszeitlichen Änderungen erfordert einige Zeit und vertiefte Kenntnisse von Erdbahngeometrie und den Eigenschaften der Erdrotation. Hochinteressant ist es nun, die Schülerinnen und Schüler über geeignete Ortseingaben (oberes Icon in der linken Menüleiste, siehe Abb. 3) mit Stellarium in entfernte Länder - insbesondere solche der Südhalbkugel - "reisen" und sich vom dortigen Sternhimmel faszinieren zu lassen. Projiziert man das Gradnetz der Erde vom Erdmittelpunkt aus an die Himmelskugel, erhält man am Himmel das äquatoriale Koordinatensystem (Abb. 4). In Stellarium kann dieses der Himmelsdarstellung per Mausklick hinzugeschaltet werden (Button 4 der unteren Menüleiste, siehe Abb. 1). Das äquatoriale Koordinatensystem ist fest mit dem Himmel verbunden, rotiert also von der Erde aus gesehen um den Polarstern. Stellarium zeigt diese Rotation eindrucksvoll. Man spricht auch vom "beweglichen Äquatorialsystem". Die beiden Koordinaten heißen jetzt nicht mehr Länge und Breite, sondern Rektaszension (RA) und Deklination (DEC). Deklination Die Deklination wird wie auf der Erde in Winkelgraden von -90 Grad bis +90 Grad angegeben. Die Nulllinie der Deklinationsmessung ist der Himmelsäquator, also die zentrische Projektion des Erdäquators an die Himmelskugel. Rektaszension Die Rektaszension wird in Stunden und Minuten angegeben. Da 360 Grad in etwa 24 Stunden Rektaszension entsprechen, entspricht eine Stunde in Rektaszension einem Winkel von 15 Grad. Rektaszensionswerte steigen von West nach Ost. Der Nullpunkt der Rektaszensionsskala liegt im Sternbild Widder. Er ist der so genannte Frühlingspunkt, also der Punkt, in dem die Sonne zu Frühlingsbeginn am Himmel steht. Der Frühlingspunkt ist der Schnittpunkt vom Himmelsäquator mit der Ekliptik, der scheinbaren Bahn der Sonne am Himmel. Der zweite Schnittpunkt von Himmelsäquator und Ekliptik ist der Herbstpunkt. Zu den Zeitpunkten, an denen die Sonne in ihrem scheinbaren Lauf diese Schnittpunkte überquert, herrscht die Tagundnachtgleiche (Äquinoktium). Materialien Die Dateien "grundblatt_sternkarte.jpg", "deckblatt_sternkarte.jpg" und "planetenzeiger_sternkarte.jpg" sind für den Ausdruck auf DIN-A4-Papier beziehungsweise Folie ausgelegt. Die Grafiken sollten vor dem Ausdruck in ihren Größen nicht verändert werden, damit alle Teile später zusammen passen. Ausdrucken, Schneiden, Kleben und Laminieren Beim Erstellen einer drehbaren Sternkarte aus diesen Elementen gehen die Schülerinnen und Schüler wie folgt vor: Grundblatt Das Grundblatt wird auf gewöhnliches Papier farbig ausgedruckt und entlang des äußeren Kreises ausgeschnitten. Eine Laminierung (am besten mit 125 Mikrometer starkem Material) macht die Sternkarte feuchtigkeitsbeständig. Überstehende Laminierung schneidet man ab, lässt aber etwa fünf Millimeter über den äußeren Kreis des Grundblatts stehen. Deckblatt Das Deckblatt kopiert man auf möglichst kräftige, dicke Transparentfolie. Beide Teile werden längs der äußeren Begrenzungslinien ausgeschnitten und mit zweiseitigem Klebeband passgenau zusammengefügt. Dabei müssen sich die Teile knapp zwei Zentimeter überlappen. (Dafür hat sich zum Beispiel Doppelband-Fotostrip von Tesa bewährt.) Das Zusammenfügen der beiden Deckblattteile ist erfahrungsgemäß der einzige Bastelschritt, bei dem jüngere Schülerinnen und Schüler Hilfe benötigen. Planetenzeiger Die "Planetenzeiger" kopiert man ebenfalls auf Transparentfolie und schneidet den Ausdruck in die zehn vorgesehenen Streifen. Zur Versteifung werden die so erhaltenen Planetenzeiger laminiert. Montage der drehbaren Sternkarte Alle drei Teile werden nun mit einem Locheisen (Durchmesser vier Millimeter) oder einem ähnlichen Werkzeug gelocht und dann in der Reihenfolge Grundblatt-Deckblatt-Planetenzeiger mit einer Musterklammer oder einer Hohlniete drehbar verbunden. Beim Grundblatt geht das Loch genau durch den Polarstern in der Mitte, beim Deckblatt durch das Kreuz im Kreismittelpunkt und beim Planetenzeiger durch das "X" auf der Skala (etwa acht Millimeter oberhalb der 80-Grad-Marke). Einstellen von Datum und Uhrzeit Die PowerPoint-Präsentation "sternkarte_handhabung.ppt" erläutert das Einstellen der drehbaren Sternkarte nach Datum und Uhrzeit. Man dreht das Deckblatt so, dass das Datum auf dem Grundblatt und die Uhrzeit auf dem Deckblatt mit dem Zeitpunkt der Beobachtung übereinstimmen. Die PowerPoint-Präsentation zeigt dies beispielhaft für den 15. Juli um 24:00 Uhr und den 20. September um 01:00 Uhr. Der geschwärzte Teil des Deckblatts verdeckt nun den Teil des Sternenhimmels, der sich unter dem Horizont befindet, der also aktuell nicht sichtbar ist. Die beiden letzten PowerPoint-Folien illustrieren, wie die drehbare Sternkarte - je nach Beobachtungsrichtung - zu halten ist, damit der beobachtete Teil des Himmels genauso wie der entsprechende Bereich der Sternkarte orientiert ist. Simulationen mit der Sternkarte Eine "Reise" auf die Südhalbkugel der Erde (wie mit Stellarium) ist mit der drehbaren Sternkarte nicht möglich. Diese zeigt nur den Himmel für Orte mit etwa 50 Grad nördlicher Breite. Zwei Effekte, die die Schülerinnen und Schüler zuvor mit Stellarium kennen gelernt haben, können sie aber auch mit der drehbaren Sternkarte erneut simulieren: Himmelsdrehung Der sichtbare Himmelsausschnitt ändert sich beim Drehen des Deckblatts im Uhrzeigersinn, während man das Grundblatt fest hält. Man simuliert damit die scheinbare Himmelsdrehung. Wechsel der Jahreszeiten Dreht man nun das Grundblatt bei festem Deckblatt gegen den Uhrzeigersinn, dann erhält man einen Eindruck von der Änderung des sichtbaren Himmelsausschnitts im Laufe der Jahreszeiten. Unsere Sternkarte hat keine eigene Rektaszensionsskala. Jüngere Schülerinnen und Schüler würde dies nur verwirren. Es gibt aber einen eindeutigen Zusammenhang zwischen dem Rektaszensions-Wert eines Himmelsobjekts und dem Wert auf der Datumsskala des Sternkartengrundblatts. Dieser Zusammenhang ist in der Grafik "tabelle_umrechnung_RA_datum.jpg" in Tabellenform dargestellt. Will man diese Option nutzen, empfiehlt es sich einen Ausdruck der Tabelle vor dem Laminieren auf die Rückseite des Sternkarten-Grundblatts zu kleben. Zum Auffinden eines Himmelsobjekts nach Koordinaten stellt man zuerst den Planetenzeiger auf den Datumswert, der laut Tabelle dem Rektaszensionswert des Objekts entspricht. Beim Deklinationswert des Objekts auf dem Zeiger befindet sich dann das gesuchte Objekt auf der Sternkarte.

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I

Halbleiterphysik für Fortgeschrittene – Grundlagen des…

Unterrichtseinheit
14,99 €

In dieser Unterrichtseinheit zur Halbleiterphysik werden die Lernenden mit dem bipolaren Transistor vertraut gemacht. Bei diesem handelt es sich um ein Halbleiterbauelement, das meistens aus Silizium besteht. Die Lernenden erkennen, dass der Transistor sowohl als Schalter als auch als Verstärker eingesetzt werden kann.Mit entsprechenden Abbildungen, Videos und Animationen werden die Schülerinnen und Schüler mit dem Aufbau des Transistors bekannt gemacht. Sie sehen, dass der Transistor aus drei dünnen Halbleiterschichten aufgebaut ist, die übereinandergelegt sind. Seine Bezeichnung ist aus seiner Funktion abgeleitet. So wird bei einer Widerstandsänderung in einer Halbleiterschicht auch der Widerstand in der anderen Schicht beeinflusst – aus dem Begriff "transfer resistor" entstand die Bezeichnung Transistor. Dabei wird zwischen einem npn- oder pnp-Transistor unterschieden, entsprechend der n- oder p-dotierten Schichten. Die jeweils mittlere Schicht ist verglichen mit den beiden anderen Schichten sehr dünn. Jede Schicht ist mit metallischen Anschlüssen versehen, die aus dem Transistorgehäuse herausführen und mit dem zugehörigen Stromkreis verbunden sind. Die Außenanschlüsse des bipolaren Transistors bestehen aus Kollektor C und Emitter E. Die mittlere Schicht wird als Basis B bezeichnet und dient als Steuerelektrode oder auch als Steuereingang des Transistors. Halbleiterphysik für Fortgeschrittene – Grundlagen des Bipolartransistors Die vielfältigen Möglichkeiten für den Einsatz von Transistoren in Form von Schaltern, Datenspeichern und Verstärkern auf teilweise miniaturisierten integrierten Schaltkreisen haben Technologien möglich gemacht, die unseren heutigen – meist selbstverständlichen – Umgang mit PC, Fernsehgeräten und Smartphone erst ermöglicht haben. Die meist nur noch von spezialisierten Fachleuten durchschaubaren physikalischen Abläufe werden durchschnittlichen Nutzerinnen und Nutzern verborgen bleiben – deshalb ist es wichtig, im Physik-Unterricht zumindest die Grundprinzipien von Transistoren so anschaulich wie möglich zu vermitteln. Vorkenntnisse Grobe Vorkenntnisse können nur von Lernenden erwartet werden, die sich von klein an mit Elektronik in Form von Baukästen et cetera beschäftigt haben. Für alle anderen wird die Halbleitertechnologie und im Besonderen der Transistor völliges Neuland sein. Didaktische Analyse Bei der Behandlung des Themas muss man darauf achten, dass die prinzipiell gut nachvollziehbare Arbeitsweise eines Transistors so anschaulich wie nur möglich vermittelt wird. Das Modell mit zwei sich ergänzenden Wasserkreisen ist dafür sehr gut geeignet. Methodische Analyse Neben der schrittweisen Heranführung an Bau und Funktion von Transistoren ist es sehr wichtig, durch geeignete Übungsaufgaben die zunächst für viele etwas komplex wirkenden Schaltkreise genau zu beschreiben und zu erläutern. Wichtig wird dabei auch werden, auf den Unterschied zwischen technischer Stromrichtung (von + nach –) im Gegensatz zur tatsächlichen Fließrichtung der Elektronen (von – nach +) einzugehen. Fachkompetenz Die Schülerinnen und Schüler können Bau und Funktionsweise eines Bipolartransistors beschreiben und erklären. wissen um die große Bedeutung von Transistoren in der Mikroelektronik. können einfache Berechnungen zur Verstärker-Wirkung von Transistoren ausführen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern, Freunden et cetera wertfrei diskutieren zu können.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Quantenkryptographie mit "Schrödingers Schlüssel"

Unterrichtseinheit

Schülerinnen und Schüler lernen mithilfe des Simulationsprogramms "Schrödingers Schlüssel" wie Informationen mit Quanten abhörsicher verschlüsselt und Abhörversuche entlarvt werden können.Seit Jahrtausenden versuchen Menschen, den Inhalt von Botschaften vor ungebetenen Abhörern zu verbergen. Dies ist in den Zeiten des Internet besonders wichtig und alltagsrelevant, zum Beispiel für eine sichere Übermittlung von Passwörtern und Bankgeheimnissen. Mit den heute verfügbaren numerischen Werkzeugen kann im Prinzip jeder Code in endlicher Zeit geknackt werden, auch wenn diese Zeit - zum Beispiel bei der Verschlüsselung mit großen Primzahlen - Jahrmilliarden in Anspruch nehmen würde. Das hört sich beruhigend an. Allerdings erwartet man, dass diese Zeit in einigen Jahren nur noch wenige Stunden betragen könnte. Erste Schritte auf dem Weg zu den dafür benötigten Quantencomputern, wie die Präparation einzelner Quantenbits, sind bereits gelungen. Die Methode der Quantenverschlüsselung ermöglicht die erste absolut abhörsichere Übertragung von Daten in der Geschichte der Informationsübertragung. Es gibt bereits entsprechende kommerzielle Geräte.Die Schülerinnen und Schüler sollen anhand einiger Bits (selbst gewählt oder mithilfe des Programms Schrödingers Schlüssel) zeigen können, wie man einen Zufallscode mit einer Polarisationsbasis übermitteln kann. zeigen können, dass diese Übermittlung nicht abhörsicher ist. mithilfe des Programms Schrödingers Schlüssel zeigen können, wie die Übermittlung von Zufallsbits mit zwei Polarisationsbasen funktioniert. mithilfe des Programms demonstrieren können, dass eine abhörende Person durch den Vergleich von Kontrollbits über kurz oder lang "auffliegt". Thema Quantenkryptographie - Simulationsprogramm zur Quantenverschlüsselung Autor Dr. Josef Küblbeck Fach Physik Zielgruppe Sekundarstufe II Zeitraum 2 Stunden Technische Voraussetzungen Windows XP-Rechner; im Idealfall Computerraum mit Demonstrationsrechner und Beamer; Rechner für jeweils 1-3 Lernende Vor dem Einsatz des Programms "Schrödingers Schlüssel" sollten die Schülerinnen und Schüler wissen, wie und mit welchen Wahrscheinlichkeiten Photonen beim Auftreffen auf einen Polarisationsfilter umpräpariert werden. Das vom Autor entwickelte Programm steht bei Lehrer-Online kostenfrei zum Download zur Verfügung. Wie üblich wird darin der Sender Alice, der Empfänger Bob und der Abhörer Eve genannt. Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot aus "Schrödingers Schlüssel": Schülerinnen und Schüler können zwischen der Übermittlung mit einer oder zwei Basen wechseln, den Abhörer Eve wahlweise hinzuschalten und die durch Eve verursachten Übermittlungsfehler aufdecken. Das Downloadpaket enthält neben dem Programm auch eine detaillierte Anleitung mit Erläuterungen zum Verschlüsselungsverfahren. Weitere ausführliche Informationen und interaktive Übungen zur Quantenkryptographie finden Sie auf der Webseite QuantumLab (siehe Zusatzinformationen). Scarani, Valerio Physik in Quanten, Eine kurze Begegnung mit Wellen, Teilchen und den realen physikalischen Zuständen, 2007, Spektrum Verlag Singh, Simon Geheime Botschaften, Die Kunst der Verschlüsselung von der Antike bis in die Zeiten des Internet, 2000, Hanser Verlag.

  • Physik / Astronomie
  • Sekundarstufe II

Orientierung am Sternenhimmel als Unterrichtserlebnis

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Orientierung am Sternenhimmel" lernen die Schülerinnen und Schüler mithilfe einer didaktischen App fünf Sternbilder kennen und wie die alten Seefahrer zu navigieren. Sternbilder sieht man je nach Jahres- und Uhrzeit in unterschiedlichen Richtungen und Positionen. Um dieses Verwirrspiel zu durchschauen, widmen sich die Lernenden zunächst der Nordrichtung, wo sich der Drehpunkt des Himmels befindet. Das Kernstück dieses Projektes ist die kostenlose App "AudioHimmelsführungen Folge 1" für Android und iOS. Nach einer einleitenden ganzen oder halben Unterrichtsstunde lassen sich die Lernenden an einem der folgenden Abende von dieser App live am gestirnten Himmel und/oder anhand des Displays führen. Gern auch mit Angehörigen, Freunden oder Mitlernenden. Für die nächste Unterrichtsstunde sind ein Schülervortrag und eine schriftliche Leistungskontrolle oder Übung angekündigt. Sowohl der Anblick des Sternenhimmels als auch kulturgeschichtliche Fragestellungen haben sich als attraktive Zugänge zur Astronomie bewährt. Die Folge 1 der App "AudioHimmelsführungen" verknüpft beides miteinander und stellt eine fundierte Einführung in die Astronomie dar. Das notwendige Vorwissen beschränkt sich auf einfache geometrische Grundkenntnisse sowie die geographische Länge und Breite. Die gut 20-minütige Audiotour ist eingängig und unterhaltsam gestaltet. Trotzdem führt das Hören allein noch nicht zu gefestigtem Wissen. Die Lernenden sollten die Führung zuerst als Trockenübung auf dem Display verfolgen, sie gelegentlich unterbrechen und Wichtiges notieren. Hören sie sie zum zweiten Mal am gestirnten Himmel, finden sie die Sternbilder leichter und verstehen die Zusammenhänge besser. Dann werden auch die Ausarbeitung des Schülervortrages und die Vorbereitung auf die angekündigte Leistungskontrolle oder Übung gelingen. Die Schülerinnen und Schüler können die App "AudioHimmelsführungen Folge 1" installieren, als Audioguide für den gestirnten Himmel nutzen und sich im selbstständigen Kenntnis- und Kompetenzerwerb üben. gewinnen Einblicke in die kulturhistorischen Anfänge der Astronomie. erlangen die Fähigkeit, am Himmel einige zirkumpolare Sternbilder zu finden und ihre Bewegung zu beschreiben. können mithilfe des Polarsterns die Himmelsrichtungen und die geografische Breite ihres Beobachtungsplatzes bestimmen.

  • Mathematik / Rechnen & Logik / Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Der Bipolartransistor: Funktionsweise und Aufbau von npn- und…

Fachartikel
5,99 €

In diesem Fachartikel zum Bipolartransistor wird dessen Nutzung und Anwendung genauer erläutert. Anhand von Skizzen und ausführlichen Erklärungen werden die Inhalte veranschaulicht dargestellt und verständlich vermittelt. Bipolartransistoren kommen in den unterschiedlichsten Arten von elektrischen beziehungsweise elektronischen Bauteilen zur Anwendung und gehören auch zu den grundlegenden Bausteinen moderner Schaltkreise. So können Bipolartransistoren Signale in Stromkreisen verstärken oder als einfache, elektronische Schalter fungieren. Nahezu alle Geräte, die elektronische Schaltungen zur Ausführung von Funktionen enthalten, verwenden solche Bipolartransistoren. Dabei gehört die Verstärkung von Strom oder Spannung eines Eingangssignals zusammen mit der Funktion als Schalter zu den nützlichsten Anwendungen dieser Bauteile. Arten von Bipolartransistoren Man unterscheidet zwei Arten von Bipolartransistoren, die als npn-Transistor oder pnp-Transistor bezeichnet werden. Die folgenden Abbildungen zeigen die Funktionsweise des npn-Transistors (Abb. 1a) sowie des pnp-Transistors (Abb. 1b) unter Einbeziehung des physikalischen Stromflusses.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Halbleiterphysik für Fortgeschrittene – Fragestellungen und…

Unterrichtseinheit
14,99 €

Zunächst lernen die Schülerinnen und Schüler in dieser Unterrichtseinheit die Unterschiede zwischen der Bewegungsrichtung von Elektronen (Minus nach Plus) und der willkürlich festgelegten technischen Stromrichtung (Plus nach Minus) kennen, was bei Schaltbildern und mathematischen Berechnungen sehr wichtig wird. Zudem werden die unterschiedlichen, den Transistor beschreibenden Kennlinien besprochen und in der Dreiquadranten-Darstellung aufgezeigt.An einfachen Beispielen werden die Lernenden mit Schaltskizzen und den jeweiligen Strom- und Spannungsverläufen in Abhängigkeit von der technischen Stromrichtung vertraut gemacht. Mit Widerständen können dabei die Stromstärken und Spannungen so gewählt werden, wie es für die Strombegrenzung und den zugehörigen Spannungsabfall nötig ist. Durch Auswertung vorgegebener Wertetabellen lernen die Schülerinnen und Schüler unter anderem, welche Bedeutung Begriffe wie Eingangskennlinie, Stromsteuerkennlinie und Ausgangskennlinie für die Basisstromstärke und die Kollektorstromstärke in Hinblick auf den Verstärkungsfaktor B haben. Halbleiterphysik und Bipolartransistoren als Unterrichtsthema Ohne Transistoren wäre die für uns alle selbstverständliche digitale Technologie nicht möglich, die auch von Laien ohne Kenntnis der dafür notwendigen Technik und Infrastruktur mit etwas Übung problemlos bedient werden kann. Dennoch sollten Schülerinnen und Schüler in dieser hochtechnisierten Welt mit einer Vielzahl von neuen Berufen im Hochtechnologiesektor einen Einblick in die grobe Funktionsweise im Rahmen des Schulunterrichts bekommen. Vorkenntnisse Grobe Vorkenntnisse können von Lernenden erwartet werden, die sich von klein an mit Elektronik in Form von Baukästen beschäftigt haben – für alle anderen wird die Halbleitertechnologie und im Besonderen der Transistor Neuland sein. Deshalb sollte im Unterricht auf gut nachvollziehbare Beispiele und Anwendungen zurückgegriffen werden. Es bietet sich zudem an, zuvor die Unterrichtseinheit Grundlagen des Bipolartransistors im Unterricht durchzunehmen. Didaktische Analyse Bei der Behandlung dieses Themas muss man darauf achten, dass Schülerinnen und Schüler nicht überfordert werden, was bei der Komplexität vieler Schaltungen mit Transistoren schnell passieren kann. Dies sollte den Teilnehmerinnen und Teilnehmern der Kurse in der Sekundarstufe II vorbehalten bleiben. Methodische Analyse Anhand überschaubarer Schaltskizzen in Verbindung mit Elektronikbaukästen – falls in der Physiksammlung vorhanden – können den Lernenden die Grundzüge der Funktions- und Anwendungsweise gut nähergebracht werden. Fachkompetenz Die Schülerinnen und Schüler wissen, dass man Transistoren als Schalter und Verstärker sowie vor allem als Speichermedium in extrem miniaturisierter Form für Computer dienen. kennen die verschiedenen Bauweisen von Transistoren (npn-Transistor und pnp-Transistor). können einfache Übungsaufgaben – wie etwa zur Stromverstärkung – erklären und berechnen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern und Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe I

Der Regenwurm auf dem Nordpol...

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema "Der Regenwurm auf dem Nordpol..." hat das Ziel, zusammen mit einer Partnerklasse aus der Schule, dem Landkreis, dem Land oder irgendwo auf dem Erdkreis eine kleine oder auch große Geschichte zu entwickeln.Über ein Mailprogramm wird die sich entwickelnde Geschichte hin- und hergeschickt und dabei immer etwas verlängert. Im Anschluss an die Geschichte entwickeln die Klassen jeweils ein Lese-, Sachkunde- und Malquiz. Zu deren Berarbeitung können andere Klassen in einer Art Wettbewerb mit einbezogen werden oder die Ergebnisse zum Mitraten für jedermann im Internet präsentiert werden.Für die erste Geschichte empfiehlt es sich, eine Klasse aus der eigenen Schule zu gewinnen. So können sich auch die Lehrkräfte langsam an die Übung heran tasten und sich täglich direkt absprechen. Der Zeitrahmen kann besser koordiniert werden und die Entwicklung der Geschichte geht schneller voran. Interessanter, spannender und sinnvoller wird es dann, wenn die Partnerklasse möglichst weit weg ist, womöglich sogar im Ausland. Verlauf der Einheit - Die Vorbereitung Gefördert werden soll das möglichst freie Schreiben der Kinder, aber zunächst muss eine Partnerklasse gefunden und Kontakt aufgenommen werden. Die Entwicklung der Geschichte Die Klasse, die beginnt, denkt sich eine Überschrift aus. Mit Spannung erwartet die andere Klasse den ersten Brief. Nun kann es losgehen mit der ersten Fortsetzung. Was sonst noch alles passierte Nach ungefähr einem Monat beendeten wir Lehrkräfte die Geschichte. Neue Geschichten entwickelten sich und wollten fortgesetzt werden. Lernziele Aufsatzerziehung: sinnvolles Fortsetzen einer Geschichte unter einem bestimmten Gesichtspunkt (zum Beispiel Eigenschaftswörter oder wörtliche Rede). Umgang mit dem Internet: Benutzen eines Mailprogramms und Umgang mit Suchmaschinen für Kinder. Leseerziehung: Informationen aus einem Text entnehmen und in sinnvolle Fragen umsetzen. Kunsterziehung: Zeichnerische Ausgestaltung eines Themas. Umgang mit einem Zeichenprogramm. Zunächst müssen sich die beteiligten Lehrerinnen und Lehrer über den Zeitraum einigen. Dabei sollte der Austausch möglichst mehrmals pro Woche erfolgen, da die Lernenden sonst das Interesse verlieren und das ganze Projekt außerdem vergessen wird, wenn nur einmal pro Woche geschrieben wird. Welche Lernziele die Lehrerinnen und Lehrer bei ihrer jeweiligen Fortsetzung verwirklichen wollen - z.B. Eigenschaftswörter, wörtliche Rede, Satzanfänge, Spannungsbogen, Zeitwörter -, bleibt Ihnen selbst überlassen. Natürlich können sich auch mehr als zwei Klassen beteiligen. Dann wird das ganze noch lustiger und spannender, aber auch langwieriger und man kommt weniger oft mit dem Schreiben dran. Form des Austausches Wichtig ist auch die Form des Austausches, denn entweder wird die Geschichte zum Beispiel mit MS-Word geschrieben und als Anhang verschickt oder direkt in ein Mailprogramm eingegeben und verschickt. Bei einer Übermittlung als email-Anhang können immer wieder Probleme beim Laden des Anhanges entstehen, wenn ein Computer womöglich eine ältere Word-Version hat als der andere. Sichern der Geschichte Es empfiehlt sich, regelmäßig die aktuelle Version der Geschichte zu speichern! Es gibt folgende Möglichkeiten: Sie kann im Mailprogramm selbst gespeichert werden (Nachteil: Der Provider hat Probleme und alle Mails verschwinden). Es hat sich deshalb als besser erwiesen, die Geschichte jeweils selbst zu speichern. Am besten gleich in das Homepage-Programm kopieren und dort als neue Seite abspeichern. Der Text, der in das neue Programm transformiert werden soll, wird mit der linken Maustaste markiert. Nun drücke man die Steuerungs-Taste (Strg) und gleichzeitig die Taste "c" (am besten erst Strg drücken, festhalten und dann "c" drücken). Nun das neue Programm öffnen (wir verwenden z.B. den "Netscape Composer"). Im Menü "Datei" wählt man nun "Neue Seite öffnen". Nun kann man den Text in die neue Seite durch gleichzeitiges Drücken der Strg-Taste und der Taste "v". Leider gehen hierbei Formatierungen verloren. Nicht vergessen, jetzt noch die Seite zu speichern! Wir hatten uns mit der anderen Klasse auf jeweils zwei bis vier Sätze geeinigt. Die ersten Probleme entstanden, denn 20 Kinder stehen um den Computer herum und jeder will die Post öffnen. Die hinteren jammern, dass sie nichts lesen können. Die Lösung ist ein wöchentlich wechselnder Postdienst. Jeweils zwei Kinder fragen in der Früh die Post ab, drucken sie aus und hängen sie an die Seitentafel. Diese Kinder sind ebenso für das Eintippen der Fortsetzung verantwortlich. Die ersten Kinder werden von der Lehrerin oder dem Lehrer in das Programm eingeführt und dienen dann als BetreuerInnen für das nächste Team. So lernen die Schülerinnen und Schüler voneinander. Sobald die neue Version eintrifft (hoffentlich jeden zweiten Tag) entwirft jede Schülerin und jeder Schüler oder jeweils zwei bis drei Schülerinnen und Schüler gemeinsam (auf gleichstarke Gruppe achten) eine Fortsetzung. Diese werden entweder vorgelesen oder ausgelegt (am besten anonym, damit keine unnötigen Konkurrenzkämpfe entstehen). Anschließend entscheidet die Klasse gemeinsam, welche Version genommen wird. Entweder vergeben die Lernenden beim Lesen Punkte oder es erfolgt eine Abstimmung per Finger. Das lässt ein Chaos oder heftige Kämpfe vermuten, lief aber in unserem Fall immer bei allen Klassen problemlos ab. Es besteht außerdem die Möglichkeit, Gruppen zu bilden, die jeweils eigenverantwortlich die Geschichte weiter entwickeln. Wir haben beide Versionen ausprobiert und die erste als produktiver empfunden. Ist eine Version gewählt worden, kann sie nun noch im Klassenverband sprachlich verbessert werden. Die Lehrerinnen und Lehrer können auch schon vorher eine Vorgabe machen und so ein gerade eingeführtes Ziel bei der Aufsatzarbeit üben, anwenden, und verbessern. So lässt sich gut ein Schwerpunkt auf Eigenschaftswörter, wörtliche Rede, oder Satzanfänge setzen. Spontan wollten meine Schülerinnen und Schüler ein Lesequiz entwickeln, da sie zur Zeit jeweils für die Parallelklasse ein Quiz zur Zeitschrift "Mücke" entwickelten. Bald stellten sie fest, dass ein Lesequiz für die eigene Klasse oder die Parnterklasse natürlich nicht sehr spannend ist, da ja jeder die Geschichte mittlerweile auswendig kannte. Die Kinder lasen nämlich bei jeder neuen Fortsetzung die ganze Geschichte begeistert jeweils wieder vom Anfang an. Also beschlossen wir, ein Quiz für unsere Zweitklässler zu entwickeln und es per E-Mail zu verschicken. Bei uns hat jede Klasse eine eigene E-Mail-Adresse. Das schien uns viel lustiger und spannender als das ganze persönlich abzuliefern. Meine Schülerinnen und Schüler mussten sich dazu in das Leseniveau der 2. Klasse eindenken und entsprechende Fragen formulieren. Es bildete sich sogar eine Gruppe, die besonders einfache Fragen für die 1. Klassen entwickelte. Die "Kleinen" lasen und rätselten begeistert mit. Thema: Polarkreis Jetzt mussten natürlich auch die 4. Klassen miteinbezogen werden. Meine Klasse befand den Text und die Fragen für zu einfach. Hier schien ihnen eher ein "Polarquiz" angebracht. Die Thematik bot sich von selbst an. Woher nun Informationen über Eisbären, Pinguine und das Polarmeer bekommen? Wie konnte man vermeiden, dass die Fragen zu schwer oder nicht beantwortbar wurden? Internetrecherche Wir beschlossen, uns im Internet über die obigen Punkte zu informieren und die Suchmaschinen einzugrenzen, da wir aus Erfahrung mit Internetralleys wussten, dass die Informationsflut für Zehnjährige sonst nicht zu bewältigen ist. Die Kinder informierten sich nun zunächst selbst über das Thema Eismeer, Polarmeer, Pinguine, Eisbären . Dabei stießen sie noch auf andere interessante Themen, wie Robben, Wale und ähnlichem. Quizfragen formulieren Dabei mussten die Kinder sehr viel lesen, Informationen sortieren und verschiedene Fachbegriffe erforschen. Entsprechende Quizfragen zu formulieren entpuppte sich als gar nicht so einfach. Die Fragen wurden an Mitschülerinnen und Mitschüler in der Klasse getestet. Können die Fragen beantwortet werden? Sind sie sinnvoll? Können andere Kinder sie verstehen? Sind sie zu leicht? - Bald war das Quiz fertig und die Schülerinnen und Schüler hatten viel über die verschiedenen Tiere gelernt. Nun fehlten nur noch die nicht so guten Leser und Leser der 1. Klassen. Wie könnten man diese mit einbeziehen? Ein Malwettbewerb war die Lösung. Thema war, ein Bild zur Geschichte zu malen. Das rief natürlich den Neid der gesamten Schule hervor, so dass zum Schluss alle teilnahmen, aber die Wertung innerhalb der Jahrgangsstufen statt fand. Leider konnten wir die Bilder nicht auf unser Homepage präsentieren, weil uns ein entsprechender Scanner oder eine Digitalkamera fehlt. Im Laufe des Schuljahres haben sich in unserer Klasse mehrere Fortsetzungsgeschichten entwickelt. Neben "Der Regenwurm auf dem Nordpol" entstanden so noch "Das Altenheim auf dem Mars und "Der Faschingsritter" (ein Fortsetzungsgedicht). Die Ergebnisse unserer Arbeit sollten natürlich auf unserer Homepage erscheinen. Unsere Schüler schreiben ihre Homepage selbtständig mit dem Nescape Composer. Hintergründe wurden mit dem Paintprogramm erstellt und die Seiten entsprechend gestaltet. Fast von selbst entwickelt sich mit der Partnerschule ein reger Briefkontakt. Die Schülerinnen und Schüler lernen die andere Schule kennen, Ideen werden ausgetauscht, private Kontakte geknüpft. Besonders interessant ist dies, wenn die andere Schule im Ausland liegt.

  • Deutsch / Kommunikation / Lesen & Schreiben
  • Primarstufe, Sekundarstufe I, Sekundarstufe II, Berufliche Bildung
ANZEIGE