Vom Lotto zum Pascalschen Dreieck: Variation und Verallgemeinerung

Der zweite Teil verallgemeinert die Fragestellung des ersten Teils und führt zu tiefer liegenden mathematischen Sachverhalten.

Arbeitsblatt, Teil 2

Verallgemeinerung auf k erfolgreiche Teilnehmer

Im zweiten Teil der Aufgabenstellung ("Variation und Verallgemeinerung") wird der Kontext mindestens zweier Jackpot-Gewinnerinnen oder -gewinner vom Ende des ersten Teils auf genau beziehungsweise mindestens k erfolgreiche Lotterie-Teilnehmende verallgemeinert. Nun wird für eine Diskussion des Funktionsterms allerdings ein tieferes Verständnis des Binomialkoeffizienten notwendig. Dazu wird dieser als Funktion in n betrachtet, auf den Bereich der reellen Zahlen verallgemeinert, exemplarisch graphisch dargestellt und berechnet. Hierbei stellen die Schülerinnen und Schüler fest, dass es sich im Grunde bei dem Symbol

um nichts anderes als ein Polynom k-ten Grades in x handelt. Damit befinden sich die Lernenden wieder auf vertrautem Terrain aus Mittel- und Oberstufe.

Pascalsches Dreieck

Im Anschluss wird der Aufbau des Pascalschen Dreiecks bewiesen und gezeigt, dass sich die Werte der jeweiligen "Binomialkoeffizient-Polynome" für natürliche Argumente einfach in den Spalten beziehungsweise Diagonalen des Pascalschen Dreiecks ablesen lassen. Offensichtlich liefert das Pascalsche Dreieck aber auch jeweils eine Rekursionsformel für die einzelnen Polynome. Die Schülerinnen und Schüler lernen dieses andersartige Konzept zur Definition einer Funktion für den Spezialfall k=2 kennen und ermitteln mithilfe der Gaußschen Summenformel den Zusammenhang zwischen der rekursiven und der expliziten Darstellung. Dabei gibt es neben diesem algebraischen aber auch einen geometrischen Beweisweg über die so genannten Dreieckszahlen.

Anwendung der Regel von l'Hospital

Mithilfe der Regel von l'Hospital erhalten die Schülerinnen und Schüler nun Zugang zu einer mathematisch sehr gewichtigen Tatsache, nämlich dass eine Exponentialfunktion schneller wächst als jede Potenz beziehungsweise jedes Polynom. Damit lässt sich nun auch die Ausgangsfrage allgemein sehr schnell beantworten.

Graphen zur Veranschaulichung

Zum Abschluss sehen die Schülerinnen und Schüler anhand von exemplarischen Graphen mittels eines Funktionsplotters (hierzu eignet sich zum Beispiel auch GeoGebra), wie sich die gesuchte Wahrscheinlichkeit verhält und in welchem Bereich sich überhaupt erst Bezüge zur Realität anbieten (vergleiche Abb. 1, zur Vergrößerung bitte anlicken). Auf die Thematisierung der für den Kontext kleiner Erfolgswahrscheinlichkeiten bei großer Stichprobe als gute Näherung geeigneten Poisson-Verteilung ("Verteilung der seltenen Ereignisse") wird verzichtet, da in erster Linie nicht das rein statistische Problem, sondern die Vernetzung von stochastischen/statistischen mit analytischen und algebraischen Inhalten im Vordergrund stehen soll.

 

Fazit

Die Schülerinnen und Schüler erhalten durch diese Lerneinheit die Möglichkeit, eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik herzustellen. Zudem zeigt sich, dass neuartige Symbole (wie der Binomialkoeffizient) oder Schreibweisen (wie die rekursive Definition einer Funktion) durch geeignete Betrachtungsweise gar nicht mehr so neuartig sein müssen, sondern bereits bekannten Dingen entsprechen. Durch die zusätzliche Einführung einiger weniger Hilfsmittel (allgemeine Exponentialfunktion als e-Funktion, Regel von l'Hospital) erschließt sich so auch eine ungewohnte Funktion den oftmals schematisch verfolgten Argumenten der Kurvendiskussion.

 

Autor

Avatar
Matthias Brandl

Zum Profil

Lizenzinformation

Frei nutzbares Material
Die von Lehrer-Online angebotenen Materialien können frei für den Unterricht genutzt und an die eigene Zielgruppe angepasst werden.

In Kooperation mit

Lehrstuhl für Didaktik der Mathematik

Dieser Inhalt wird in Zusammenarbeit mit dem Lehrstuhl für die Didaktik der Mathematik an der Universität Augsburg angeboten.