Unterrichtseinheit: Kampf gegen Krebs

Am Beispiel einer Signalkette erkennen Schülerinnen und Schüler, wie molekularbiologische Grundlagenforschung die Entwicklung neuer und innovativer Medikamente ermöglichen kann.
 

Mehr als 200.000 Menschen sterben in Deutschland pro Jahr an Krebserkrankungen. Bei der Behandlung kommen neben Bestrahlungen Chemotherapien zum Einsatz. Die dabei verwendeten Wirkstoffe schädigen insbesondere die sich schnell teilenden Tumorzellen. Aber auch gesunde Zellen werden angegriffen. Schwere Nebenwirkungen sind die Folge. Wissenschaftler und Mediziner arbeiten an der Entwicklung von Wirkstoffen für eine zielgenauere Krebstherapie. Die soll nicht nur weniger belastende Behandlungsmethoden, sondern zukünftig auch die Bekämpfung heute noch schwer therapierbarer Tumore ermöglichen.

 

Kompetenzen

Die Schülerinnen und Schüler sollen

  • Einblick in Regulationsmechanismen auf molekulare Ebene gewinnen.
  • Mechanismen der Krebsentstehung und -entwicklung kennenlernen.
  • allgemeine Eigenschaften biologischer Signalkaskaden am Beispiel der Rezeptor-Tyrosinkinasen kennenlernen.
  • Wirkungsmechanismen neuartiger Krebsmedikamente verstehen.

Kurzinformation zum Unterrichtsmaterial

ThemaKampf gegen Krebs - von der Grundlagenforschung zum Medikament
AutorDr. André Diesel
FachBiologie
ZielgruppeKursstufe
Zeitraum2-3 Stunden

Didaktisch-methodischer Kommentar

Ziele der Unterrichtseinheit
Die zentrale Botschaft dieser Unterrichtseinheit ist: Krebs entsteht durch den Verlust negativer Kontrollen, die Wachstum und Teilung von Zellen in gesunden Geweben streng überwachen. Die Vielfalt der daran beteiligten zellulären Nachrichtensysteme ist unglaublich komplex und zurzeit nur ansatzweise durchschaubar. Zudem variieren die vielen miteinander vernetzten Signalketten und ihre Störungen von Zelltyp zu Zelltyp, von Tumor zu Tumor. Dies macht den Kampf gegen Krebszellen so schwierig. In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler einen zentralen Mechanismus der Signaltransduktion und die vereinfachte Darstellung eines Signalwegs kennen. Dabei begegnen ihnen "Schalter", die in vielen molekularbiologischen Bereichen von zentraler Bedeutung sind (GTP-bindende Proteine, Konformationsänderungen, Phosphorylierungen).

MS Wissenschaft 2011
Im Rahmen des Wissenschaftsjahres 2011 "Forschung für unsere Gesundheit" zeigt die Mitmachausstellung an Bord der MS Wissenschaft "Neue Wege in der Medizin" unter anderem Exponate zum Thema "Im Kampf gegen Krebs - von der Grundlagenforschung zum Medikament". Zu sehen sind dabei auch Animationen von Prof. Dr. Axel Ullrich vom Max-Planck-Institut für Biochemie in Martinsried. Die Filme visualisieren die zellulären Signalsysteme, die Thema dieser Unterrichtseinheit sind. Zudem zeigen sie, wie neuartige Krebsmedikamente wirken und Tumore durch eine Hemmung der Angiogenese - die Neubildung von Blutgefäßen - "aushungern" sollen. Die Darstellungen sind sehr vereinfacht. Anschaulichkeit steht im Vordergrund und nicht die wissenschaftliche Korrektheit im Detail. (Die hier verwendeten Grafiken stammen aus den Animationen.) Vom 19. Mai bis zum 29. September ist das umgebaute Binnenfrachtschiff unterwegs und macht in 35 Städten Halt. Ein Besuch der Ausstellung bietet eine ideale Ergänzung zur Behandlung des Themas im Unterricht. Informationen zum Tourplan und zur Gruppenanmeldung finden Sie auf der Webseite von Wissenschaft im Dialog (siehe Zusatzinformationen).

Unterrichtsmaterialien "Kampf gegen Krebs" zum Download

Arbeitsblätter

kampf_gegen_krebs_arbeitsblaetter.zip
 

Zusatzinformationen

Fachliche Voraussetzungen

Die Unterrichtseinheit kann in das Wahlmodul "Krebs: Auslösende Faktoren, molekulare Mechanismen der Entstehung, Aspekte der Gesundheitserziehung, Zellzyklus und Apoptose" integriert werden. Eigenschaften von Krebszellen sollten bereits bekannt sein. Die Bedeutung der Bildung von Blutgefäßen (Angiogenese) für das schnelle Wachstum von Tumoren kann - falls nicht schon geschehen - im Rahmen dieser Unterrichtseinheit behandelt werden. Kenntnisse zur Apoptose sind hilfreich, aber nicht erforderlich.

Zelluläre Nachrichtensysteme

Fehlfunktionen verursachen Krankheiten
Molekulare Regulationsmechanismen sind die Voraussetzung für Differenzierung und Organbildung und erhalten die Lebensfähigkeit eines Organismus. Wichtige Stellschrauben dieser molekularen Nachrichtensysteme sind Botenstoffe, die über das Blut oder die Gewebsflüssigkeit transportiert werden oder diffundieren. Sie binden nach dem Schlüssel-Schloss-Prinzip an spezifische Rezeptoren auf der Oberfläche der Zielzellen und aktivieren komplexe Signalketten im Zellinneren. Diese steuern die Genaktivität und beeinflussen Eigenschaften und Verhalten der Zelle. Fehlfunktionen dieser Nachrichtensysteme haben fatale Folgen. Sie sind die Ursache aller Krebserkrankungen und vieler anderer Krankheiten.

Wachstumsfaktoren binden an Rezeptor-Tyrosinkinasen
Der Epidermale Wachstumsfaktor (epidermal growth factor, EGF) ist ein wichtiger Botenstoff. Die Bindung des Polypeptids an seinen Rezeptor stimuliert die Ausbildung verschiedener Zelltypen sowie Wachstum und Teilung der Zellen (Proliferation). Der EGF-Rezeptor (epidermal growth factor receptor, EGFR) gehört zur Familie der Rezeptor-Tyrosinkinasen. Diese einander sehr ähnlichen Transmembranmoleküle kommen beim Menschen auf allen Zellarten vor. Sie bestehen aus einem extrazellulären Bereich, der den Botenstoff bindet, einem die Membran durchquerenden Abschnitt und einem intrazellulären Bereich. Der intrazelluläre Bereich besitzt eine Kinase-Domäne mit ATP-Bindungsstelle. Kinasen sind Enzyme, die Phosphatgruppen von ATP auf die Hydroxylgruppen (-OH) anderer Moleküle übertragen. Tyrosinkinasen phosphorylieren Proteine und verändern dadurch deren Aktivität. Sie übertragen die Phosphatgruppe dabei auf die Hydroxylgruppe der Aminosäure Tyrosin.

 

Aktivierung des Wachstumsfaktor-Rezeptors

Die Bindung des Wachstumsfaktors an seinen Rezeptor bewirkt eine Änderung der Proteinstruktur. Aufgrund dieser Konformationsänderung lagern sich die Rezeptoren paarweise zusammen (Dimerisierung). Die intrazellulären Bereiche der Rezeptor-Dimere können sich dann über ihre Kinase-Aktivität gegenseitig phosphorylieren. Danach sind die Rezeptoren "scharf" und initiieren komplexe intrazelluläre Signalketten. Dies erfolgt sehr schnell: Bereits eine Sekunde nach der Bindung des Botenstoffs ist die intrazelluläre Signalkette aktiviert. Abb. 1 (Platzhalter bitte anklicken) zeigt ein Rezeptor-Dimer (rot und gelb) mit gebundenem Botenstoff (hellblau) in der Zellmembran. Im Fall des EGF-Rezeptors wird ein Wachstumsfaktormolekül von zwei Rezeptoren gebunden. Andere Rezeptor-Tyrosinkinasen binden je ein Botenstoffmolekül pro Rezeptor (dieser Fall ist auf dem Arbeitsblatt der Unterrichtseinheit dargestellt, "ab_2_signalkette_bauelemente.pdf"). Das intrazelluläre Nachrichtensystem wird in Abb. 1 durch das Netzwerk unter der Zellmembran angedeutet. Die Grafik ist - wie alle Abbildungen in dieser Unterrichtseinheit - ein Screenshot aus einer Animation Prof. Dr. Axel Ullrich vom Max-Planck-Institut für Biochemie in Martinsried, die auch auf der MS Wissenschaft "Neue Wege in der Medizin" zu sehen ist.

 

Signalketten als Schlüssel zur Bekämpfung von Krebszellen

Überproduktion von Wachstumsfaktor-Rezeptoren in Krebszellen
Bereits in den 1990er Jahren des vergangenen Jahrhunderts entdeckte man, dass Krebszellen vieler Tumore auf ihrer Oberfläche wesentlich mehr EGF-Rezeptoren als gesunde Zellen tragen. Zudem wiesen Tumore höhere EGF-Konzentrationen als gesunde Gewebe auf. Patienten, die zugleich Rezeptor und Wachstumsfaktor vermehrt bilden, haben besonders schlechte Heilungschancen (schnelles Tumorwachstum, verstärkte Bildung von Metastasen). Wissenschaftler erforschen die Nachrichtensysteme, mit denen Signale von der Zelloberfläche in das Zellinnere und in den Zellkern übermittelt werden. Das Verständnis dieser Signalketten und ihrer Fehlfunktionen ist der Schlüssel für die gezielte Entwicklung neuartiger Krebsmedikamente. Rezeptor-Tyrosinkinasen wie der EGF-Rezeptor spielen bei der Krebsentstehung eine wichtige Rolle und stehen im Fokus der Molekularbiologen und Mediziner.

Fatale Folgen
Rezeptor-Tyrosinkinasen stimulieren Wachstum und Teilung der Zellen. In gesundem Gewebe wird ihre Aktivität von hemmenden Kontrollmechanismen streng reglementiert. In Krebszellen haben diese negativen Kontrollinstanzen ihre Wirkung verloren. Die Rezeptor-Tyrosinkinasen sind immer aktiv und verursachen

  • die unkontrollierte Vermehrung von Krebszellen (Proliferation).
  • die Bildung von Blutgefäßen, die den Tumor mit Sauerstoff und Nährstoffen versorgen (Angiogenese).
  • die Hemmung des programmierten Zelltods (Apoptose), einem "Notfallprogramm", mit dem sich entartete Zellen selbst zerstören.
  • die Wanderung von Zellen und somit die Bildung von Tochtergeschwülsten (Metastasen).

Herceptin - Blockade des Rezeptors durch monoklonale Antikörper

Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München haben den ersten zielspezifischen Anti-Krebs-Wirkstoff entwickelt, der in die zelluläre Signalkette eingreift: Trastuzumab oder Herceptin (Handelsname). Die Substanz, ein monoklonaler Antikörper, wurde im Jahr 2000 in der Europäischen Union zugelassen. Er bindet an der Zellaußenseite an eine Rezeptor-Tyrosinkinase, die als Wachstumsfaktor-Rezeptor fungiert und in Krebszellen überproduziert wird. Durch die Bindung des Antikörpers wird die Bindung des Botenstoffs und so die Übertragung des Signals in die Zelle unterbunden (Abb. 2). Dies führt dazu, dass sich die Tumorzellen sich durch Apoptose - einem Notfallprogramm für die Selbstzerstörung entarteter Zellen - selbst zerstören können.

 
 

Zudem führt die Antikörperbindung zur Rekrutierung von Immunzellen, die die Tumorzellen angreifen (Abb. 3). Ein weiterer Effekt von Herceptin ist auch die Hemmung der Angiogenese, also der Bildung von Blutgefäßen, die den Tumor mit Sauerstoff und Nährstoffen versorgen. Für das schnelle Tumorwachstum ist der Anschluss an die Versorgungssysteme des Organismus eine wichtige Voraussetzung. Von den Krebszellen ausgesendete Botenstoffe stimulieren die Blutversorgung des Tumors. Der Einfluss von Herceptin auf das Nachrichtensystem der Krebszellen wirkt dem entgegen - der Tumor muss "hungern".

 

Sutent - Kompetitive Hemmung der Tyrosinkinase im Zellinneren

Wirkstoffe mit einem geringen Molekulargewicht können in das Zellinnere gelangen und dort Zielmoleküle des zellulären Signalsystems angreifen. Eine solche Substanz wurde ebenfalls am Max-Planck-Institut für Biochemie entwickelt: Das Medikament Sunitinib (Handelsname Sutent, Zulassung in der Europäischen Union im Jahr 2006) verhindert die Bindung von ATP an die Kinase-Domäne der Rezeptor-Tyrosinkinasen (kompetitive Hemmung). In Abb. 4 ist Sutent orange, ATP grün dargestellt. Der Wirkstoff verhindert die für die Signalübertragung entscheidende Autophosphorylierung des Rezeptors.

 
 

Wie Herceptin soll auch Sutent sowohl das Wachstum der Krebszellen, anti-apoptotische Mechanismen und auch die Neubildung von Blutgefäßen hemmen, die das schnelle Wachstum des Tumors ermöglichen (Abb. 5). Während der monoklonale Antikörper Herceptin per Infusion verabreicht werden muss, können Patienten den niedermolekularen Wirkstoff Sutent in Tablettenform zu sich nehmen. Die Kombination verschiedener Wirkstoffe ist ein wichtiger Schritt, um das Wettrennen gegen die schnelle Wandlungsfähigkeit von Krebszellen gewinnen zu können.

 

Wie wurde Sutent entwickelt?

Nachdem Rezeptor-Tyrosinkinasen als strategische Ziele für die Krebstherapie identifiziert waren, suchte man nach Substanzen, die an die ATP-Bindungsstelle der Kinasen binden und so die Enzymaktivität kompetitiv hemmen. In einem ersten Schritt wurden aus zehntausenden Molekülen diejenigen ausgewählt, deren Struktur (theoretisch) die Kriterien für eine Affinität zu der ATP-Bindungsstelle erfüllten. Die Vorauswahl wurde einem Wirkstoffscreening unterzogen. Die Strukturen der erfolgreichsten Substanzen wurden mithilfe der medizinischen Chemie weiter optimiert. Das Ergebnis, Sutent, bindet jedoch nicht nur an eine Rezeptor-Tyrosinkinase, sondern an die ATP-Bindungsstelle von mehr als 150 Kinasen! Die Substanz wirkt also als "Breitband-Kinase-Hemmer". Wissenschaftler versuchen heute, unter diesen Kinasen diejenige(n) zu identifizieren, auf die die anti-Krebs-Wirkung von Sutent zurückzuführen ist. In dem darauf folgenden Schritt gilt es dann, die Struktur des Wirkstoffs so zu verändern, dass er nur noch die für die Krebsbekämpfung relevanten Kinasen hemmt. Durch die Erhöhung der Spezifität können die Dosierung des Wirkstoffs und so auch die Nebenwirkungen reduziert werden.

Warum ist der Kampf gegen Krebs so schwierig?

Herceptin und Sutent sowie viele andere Medikamente helfen heute, die Lebensqualität und die Überlebenschancen von Krebspatienten zu erhöhen. Wie weit die oben so klar beschriebenen Wirkungen und Zusammenhänge tatsächlich den zellulären Abläufen entsprechen, ist jedoch noch nicht vollständig erforscht. Ein Sieg über den Krebs ist noch nicht greifbar. Dies liegt an der Diversität der Krebszellen, ihrer Wandlungsfähigkeit und der Vielfalt der in ihnen außer Kontrolle geratenen Regulationsmechanismen.

Arbeitsblätter

Ansatzpunkte für eine gezielte Krebstherapie
Das erste Arbeitsblatt (ab_1_therapie_ansatzpunkte.pdf) weist auf den Zusammenhang zwischen der Überproduktion von Wachstumsfaktoren sowie ihrer Rezeptoren und der Bösartigkeit von Tumoren hin. Die Lernenden gliedern die Ereigniskette (Signal, Signalübertragung, Signalwirkung) und identifizieren strategische Angriffspunkte für eine gezielte Krebstherapie. Sie erkennen, dass für die Umsetzung die molekularen Grundlagen des zellulären Nachrichtensystems erforscht werden müssen.

Die Signalkette "downstream" des Rezeptors
Mit dem zweiten Arbeitsblatt lernen Schülerinnen und Schülern Details der Signalkette kennen, die von einer Rezeptor-Tyrosinkinase angestoßen wird. Sie sollen die im Arbeitsblatttext (ab_2_1_signalkette.pdf) beschriebene Abfolge der Wechselwirkungen zwischen verschiedenen Proteinen bildlich umsetzen (Partner- oder Kleingruppenarbeit). Die Vorgabe grafischer Elemente (ab_2_2_signalkette_bauelemente.pdf) sorgt dabei für einen "gemeinsamen Nenner" innerhalb des Kurses. Methodisch kann hier - je nach Gegebenheiten und Lerngruppe - ganz unterschiedlich vorgegangen werden. Schülerinnen und Schüler können die vorgegeben Bausteine der Signalkette zum Beispiel ausschneiden und "zusammenpuzzeln". Ergebnisse können dann mit entsprechenden Folienfragmenten am Tageslichtprojektor vorgestellt und im Plenum diskutiert werden. Schließlich kann die Lehrkraft eine Folie mit dem vollständigen Signalweg auflegen (ab_2_2_signalkette_bauelemente_loesung.pdf). Bei entsprechender technischer Ausstattung kann die Signalkette von den Lernenden von auch digital visualisiert werden - zum Beispiel als PowerPoint-Animation. Ähnlich wie in der Unterrichtseinheit Waffen im Kampf gegen AIDS können, aufbauend auf die Textarbeit, die fachlichen Inhalte mit der Kreativtechnik "Storyboard" intensiv reflektiert werden.

Allgemeine Eigenschaften biologischer Nachrichtensysteme
Bei der Übung kommt es natürlich nicht darauf an, Details der Signalkette zu vermitteln (von der die Darstellung ohnehin nur einen Ausschnitt zeigt). Vielmehr sollen Schülerinnen und Schüler ein Gefühl für die Natur komplexer biologischer Nachrichtensysteme entwickeln. Sie sollen erkennen, wie das Signal innerhalb der Zelle kaskadenartig vervielfältigt wird, indem ein aktiviertes Protein viele weitere Proteine aktiviert - wie bei einer Telefonkette (so zumindest stellt man sich das vor - experimentell belegt ist dies zurzeit noch nicht). Zudem sollen sie prinzipielle und in vielen biologischen Prozessen wiederkehrende "Schalter" für die Aktivität von Proteinen kennen lernen. Ein G-Protein und seine Zusammenarbeit mit einem membranständigen Rezeptor begegnet den Lernenden zum Beispiel auch bei der Signaltransduktion in den Sehzellen der Netzhaut. So lernen sie ein wichtiges Prinzip der Biologie kennen: Die Mehrfachverwertung bewährter molekularer Module und Konzepte in ganz verschiedenen Kontexten. Schließlich sollen die Schülerinnen und Schüler auf der Basis des von ihnen erstellten "Signal-Organigramms" argumentieren, warum es sinnvoll ist Wirkstoffe gegen Krebs zu entwickeln, die die Aktivierung der Rezeptor-Tyrosinkinase unterbinden und die nicht weiter "downstream" ansetzen.

Download

Arbeitsblätter

ab_1_therapie_ansatzpunkte.pdf
ab_2_1_signalkette.pdf
ab_2_2_signalkette_bauelemente.pdf
 

Lösungen zu den Arbeitsblättern

ab_1_therapie_ansatzpunkte_loesung.pdf
ab_2_1_signalkette_loesung.pdf
ab_2_2_signalkette_bauelemente_loesung.pdf

Informationen zum Autor

Dr. André Diesel ist Diplom-Biologe und freier Mitarbeiter von Lehrer-Online. Von 2005 bis 2010 war er Wissenschaftlicher Mitarbeiter in dem vom BMBF geförderten Bildungsprojekt "Naturwissenschaften entdecken!".

Anbieter
 
Verwandte Themen
 
Verwandte Themen
 
Gesundheit
  • Gesundheit
    Unterrichtseinheiten und Materialien rund um das Thema Gesundheit
 
Impressum | Datenschutz | Über uns | RSS-Feeds | Seite bookmarken:  del.icio.us Yahoo! My Web google Bookmarks Digg Mister Wong OneView MerklisteEmpfehlenDruckenSeitenanfang
Nicht redaktionelle Inhalte nach § 6 TMG von anderen Anbietern als Lehrer-Online werden durch den Namen des Anbieters gekennzeichnet.