Selbstbau eines Spektrometers für die Digitalkamera

In diesem Beitrag wird ein Spektrometer vorgestellt, das Schülerinnen und Schüler mit sehr geringen Materialkosten - etwa drei Euro - selbst bauen können. In Verbindung mit einer Digitalkamera können sie damit eigenständig gut aufgelöste Spektren aufnehmen.
 

Die mithilfe des Spektrometers gewonnenen digitalen Bilder lassen sich mit dem Computer leicht auswerten. Am Beispiel des Spektrums einer Energiesparlampe werden Gebrauch und Leistungsfähigkeit des Selbstbau-Spektrometers vorgestellt. Es wird gezeigt, wie das Spektrometer mithilfe der bekannten Spektrallinien der Energiesparlampe einfach zu kalibrieren ist. Am Beispiel der spektralen Trennung der Natrium-D-Linien wird sein beachtliches Auflösungsvermögen demonstriert.

Möglichkeiten der qualitativen Untersuchung

Experimente zur Spektroskopie werden im naturwissenschaftlichen Unterricht in der Regel als Demonstrationsexperimente vorgeführt. Schülerinnen und Schüler können aber auch eigenständig spektroskopieren, wenn sie sich einfache Handspektrometer selbst basteln, zum Beispiel nach einer Anleitung von Heinrich Kuypers (siehe Versuche mit dem Eigenbau-Gitterspektrometer) oder mit einem Material-Set vom AstroMedia-Verlag. Sehr motivierend sind auch einfache Experimente zur Spektralanalyse mit der Digitalkamera, wie sie von Klaus G. Schröder beschrieben werden (Spektralanalyse mit einer Digitalkamera; MNU 63/1 [2010], Seite 35-38). Diese und die zuvor genannten Experimente eignen sich hauptsächlich für qualitative Untersuchungen.

Quantitative Untersuchungen mit dem Selbstbau-Spektrometer

Hier wird ein selbst zu bauendes Spektrometer vorgestellt, mit dem präzise quantitative Untersuchungen möglich sind. Schülerinnen und Schüler können so eigenständig sehr gut aufgelöste Linienspektren erzeugen, diese mit einer Digitalkamera aufnehmen und am Computer genau vermessen. Da die Spektralanalyse von fächerübergreifender Bedeutung ist, eignen sich die Experimente für alle naturwissenschaftlichen Fächer.

Fazit

Schülerinnen und Schüler können mit etwas handwerklichem Geschick und sehr geringen Materialkosten ein genau arbeitendes Spektrometer für ihre Digitalkamera bauen. Sie erhalten Fotos von farbenprächtigen Spektren, die sie auf einfache Art am Computer auswerten können. Mit diesem Instrument können sie fächerübergreifend in Biologie, Chemie und Physik selbstständig experimentieren und zu aussagekräftigen Ergebnissen kommen.

Literatur

  • Schröder, Klaus G.
    Spektralanalyse mit einer Digitalkamera; MNU 63/1 (2010), S. 35-38

Spektrometer mit Digitalkamera

Bei dem Spektrometer handelt es sich um ein Gitterspektrometer, dessen Funktionsweise im Physikunterricht der Sekundarstufe II behandelt wird. Die Bauteile und ihre hier speziell für die Digitalfotografie gewählte Anordnung: Spalt (1), Blende (2), Gitter (3) und Digitalkamera (4).

 

Das zu untersuchende Licht fällt durch einen Spalt und eine Blende auf ein schräg gestelltes Durchlicht-Beugungsgitter. Hier wird ein Teil des Lichts gebeugt und in eine Digitalkamera gelenkt. Diese bildet den Spalt ab; er erscheint bei einfarbigem Licht als einzelne Spektrallinie. Spalt, Blende und Gitter sind in einem Gehäuse aus schwarzem Fotokarton montiert (Abb. 2). Der Abstand zwischen Spalt und Gitter beträgt etwa 20 Zentimeter. Gitter und Digitalkamera sind um etwa 30 Grad gegenüber der Einfallsrichtung des Lichtstrahls gedreht, sodass bei einer Gitterweite des montierten Gitters von einem Mikrometer das sichtbare Spektrum des Lichts in der Bildmitte erscheint.

 
 

An der Rückseite des Gehäuses befindet sich eine kreisförmige Öffnung, durch die passgenau das Objektiv einer Digitalkamera geführt wird. So kann von der Rückseite her kein Streulicht in das Spektrometer gelangen. Das Gehäuse besitzt einen abnehmbaren Deckel, der ein bequemes Auswechseln der Teile ermöglicht. Gehäuse und Kamera werden gemeinsam auf ein Holzbrettchen montiert und somit fest miteinander verbunden. Das Gehäuse wird festgeklebt und die Kamera angeschraubt. Schülerinnen und Schüler können das Spektrometer selbst bauen. Die Materialkosten einschließlich der für Spalt und Gitter betragen nur etwa drei Euro.

Der Spalt

Diarahmen mit Glasabdeckung und zwei Rasierklingen
Die Leistungsfähigkeit des Spektrometers wird durch die Eigenschaften von Spalt und Gitter bestimmt. Der Spalt sollte möglichst eng und die Gitterweite möglichst klein sein. Zur Herstellung des Spalts wird ein Diarahmen mit Glasabdeckung verwendet. Auf der Innenseite der Rückfront werden zwei Rasierklingen nebeneinander liegend auf die Glasfläche geklebt (Abb. 3). Hierfür wird ein langsam aushärtender Zweikomponentenkleber, beispielsweise "UHU plus endfest 300", verwendet, um genügend Zeit für die Ausrichtung der Klingen zu haben. Die beiden in der Mitte sehr eng beieinander liegenden Schneiden bilden den Spalt. Vor der Zusammensetzung des Spalts ist den Schülerinnen und Schülern ein umsichtiger Umgang mit den Rasierklingen zu demonstrieren, um Verletzungen zu vermeiden!

 
 

15 Mikrometer Spaltbreite
Die beiden Klingen, die mit dem noch weichen Kleber auf der Glasfläche haften, werden unter einer Lupe mit einem geeigneten Werkzeug vorsichtig in die gewünschte Position gebracht. Ihr Abstand, dessen genauer Wert nicht bekannt sein muss, kann unter einem Mikroskop gemessen werden oder durch ein Beugungsexperiment mit einem Laserstrahl bestimmt werden. Bei den weiter unten beschriebenen Experimenten wird ein nur 15 Mikrometer breiter Spalt verwendet, aber auch breitere Spalte konnten erfolgreich eingesetzt werden.

Das Gitter

Als optisches Gitter dient eine Gitterfolie mit 1.000 Linien pro Millimeter beziehungsweise mit einer Gitterweite von einem Mikrometer. Die Folie kann preiswert beim AstroMedia-Verlag bezogen werden. Für die Gitterfolie dient wie beim Spalt ein Diarahmen als Halterung, diesmal allerdings ohne Glasabdeckung.

Anforderungen an die Kamera

Makroeinstellung
Nahezu jede Digitalkamera eignet sich, um mit dem Spektrometer Spektren zu fotografieren. Da der Spalt und die vom Gitter erzeugten Spaltbilder nur 20 Zentimeter von der Kamera entfernt sind, muss die Kamera eine Makroeinstellung haben.

Optischer Zoom, manuelle Belichtungseinstellung
Außerdem ist ein optischer Zoom nützlich, um das Spektrum vergrößert aufnehmen zu können. Bei allen digitalen Kameras wird die Belichtung automatisch eingestellt. Eine Unterbelichtung von lichtschwachen Linien oder eine Überbelichtung von besonders intensiven Linien kann in der Regel durch Anpassung der Automatik ausgeglichen werden. Günstig ist es, wenn man Blende und Belichtungszeit manuell einstellen kann. Die in diesem Beitrag gezeigten Bilder wurden mit der Digitalkamera DMC-FX550 von Panasonic aufgenommen, welche neben der automatischen Belichtung auch eine manuelle Belichtungseinstellung erlaubt.

Blick in das Innere des Spektrometers

"Testbild" mit der Energiesparlampe
Energiesparlampen sind nicht nur für "Testaufnahmen" interessant. Sie können auch als Lichtquellen für die Kalibrierung des Spektrometers verwendet werden. Sie eignen sich für die Behandlung der Spektralanalyse im Unterricht besonders gut, weil sie preiswert, überall verfügbar und leicht zu handhaben ist. Die aktuelle Diskussion zur europaweiten Umstellung von Glühlampen auf Energiesparlampen liefert einen willkommenen Anknüpfungspunkt. Ein Blick mit der Kamera in das Innere des Spektrometers, das auf eine Energiesparlampe gerichtet ist, zeigt Abb. 4 (zur Vergrößerung bitte anklicken).

 
 

Spektren erster und zweiter Ordnung
Für die in Abb. 4 gezeigte Aufnahme wurde bewusst eine besonders lange Belichtungszeit (acht Sekunden) gewählt, um auch lichtschwache Details sichtbar werden zu lassen. Auf der linken Seite des Fotos erkennt man den Spalt. Er wird sehr stark überstrahlt, und man ahnt nicht, dass er nur 15 Mikrometer breit ist. Im Zentrum erscheint etwas überbelichtet das Spektrum erster Ordnung. Die lange Belichtungszeit lässt auf der rechten Seite neben dem Spektrum erster Ordnung auch einen Teil des lichtschwachen Spektrums zweiter Ordnung erscheinen, wobei die blaue Linie besonders deutlich hervortritt. Ein besonderer Effekt entsteht durch das wenige Licht, das vom Spalt her den Innenraum beleuchtet. Man erkennt die Kanten der zwischen Spalt und Gitter liegenden Blende und den Widerschein des durch die Blende auf den Boden fallenden Lichtes.

Spektrum einer Energiesparlampe

Wenn man beim Fotografieren den optischen Zoom der Kamera benutzt, können Spektren besonders genau untersucht werden. Abb. 5 (zur Vergrößerung bitte anklicken) zeigt für eine Energiesparlampe (OSRAM DULUXSTAR) Ausschnitte solcher Fotos, die mit drei verschiedenen Belichtungszeiten aufgenommen wurden. Bei einer Belichtungszeit von einer Viertelsekunde (Abb. 5, oben) sind nur die lichtstärksten Linien zu sehen, sie werden besonders scharf abgebildet. Bei den längeren Belichtungszeiten von einer Sekunde (Abb. 5, mittig) und vier Sekunden (Abb. 5, unten) werden diese Linien durch Überstrahlung etwas breiter.

 
 

Dafür erscheinen neue Linien, die wegen ihrer geringen Intensität eine lange Belichtungszeit benötigen. Im unteren Teil von Abb. 5 sind die Wellenlängen der Spektrallinien in Nanometern angegeben, bei denen es sich im Wesentlichen um die von Quecksilber handelt. Sie wurden von dem Schüler Steffen Urban im Rahmen seiner Facharbeit am Kopernikus-Gymnasium in Wissen mit großer Genauigkeit vermessen und durch Literaturwerte abgesichert (siehe Vermessung der Spektren von Energiesparlampen).

Kalibrierung des Spektrometers

Aus der Position der Spektrallinie im Foto ergibt sich die Wellenlänge
Je weiter die Spektrallinie vom zentralen Maximum nullter Ordnung entfernt ist, desto größer ist die Wellenlänge. Beschränkt man sich auf den Spektralbereich des sichtbaren Lichts in erster Ordnung, so kann der Zusammenhang von Entfernung und Wellenlänge näherungsweise durch eine lineare Funktion beschrieben werden.

Linearer Zusammenhang von Pixelposition und Wellenlänge
Zur Bestimmung der Funktion werden die über den gesamten sichtbaren Bereich verteilten Spektrallinien der Energiesparlampe, deren Wellenlängen bekannt sind, vermessen. Zunächst wird mit einem Grafikprogramm, das die Vermessung des Bildes erlaubt (zum Beispiel Corel Draw), die Entfernung der Spektrallinie vom linken Bildrand in Pixeln gemessen. Die Messwerte werden mit den dazu gehörigen Wellenlängen in einem Diagramm grafisch dargestellt. Bei dem in Abb. 6 (zur Vergrößerung bitte anklicken) gezeigten Ergebnis wurde das Tabellenkalkulationsprogramm Excel verwendet. Dargestellt sind die Wellenlängen λ der Spektrallinien der Energiesparlampe in Abhängigkeit vom Pixel-Ort x.

 
 

Bereits zwei Wertepaare reichen aus
Man sieht mit einem Blick, dass die Punkte der Wertepaare auf einer Geraden liegen, das heißt, dass die lineare Näherung bemerkenswert gut ist. Die Schrägstellung von Gitter und Kamera erweist sich hierfür als besonders günstig. Das Programm bestimmt die Lage der Ausgleichsgeraden und ihre im Diagramm angegebene Funktionsgleichung. Die Gerade dient zur Kalibrierung des Spektrometers. Mit der Geradengleichung lässt sich die Wellenlänge einer unbekannten Spektrallinie aus ihrer Position im Spektrum berechnen. Für alle Spektrallinien der Energiesparlampe gilt, dass die mit der Gleichung der Geraden näherungsweise berechneten Wellenlängen weniger als  0,1 Prozent von den eingegebenen Werten abweichen. Wegen dieser nahezu perfekten Übereinstimmung kann das Verfahren zur Kalibrierung abgekürzt werden. Es genügt, für zwei bekannte Spektrallinien die Entfernung vom Bildrand zu messen. Mit den beiden (x;λ)-Wertepaaren können Schülerinnen und Schüler die Gerade zeichnen und deren Gleichung mit dem Taschenrechner leicht berechnen. Diese schnelle und unproblematische Art der Auswertung ist für die praktische Anwendung sehr hilfreich.

Auflösungsvermögen des Spektrometers

Breite des Spalts ist entscheidend
Ein Kennzeichen der Leistungsfähigkeit eines Spektrometers ist sein Auflösungsvermögen. Hierunter versteht man die Größe A = λ/Δλ, wobei λ die Wellenlänge und Δλ die Differenz zweier gerade noch trennbarer Wellenlängen ist. Sie ist ein Maß für die Fähigkeit des Spektrometers, Licht nach unterschiedlichen Wellenlängen aufzutrennen. Das Auflösungsvermögen eines Spektrometers hängt von mehreren Faktoren ab, wobei in unserem Fall die Breite des Spalts entscheidend ist. Je enger er ist, desto schmaler sind die Linien und desto größer ist das Auflösungsvermögen.

 

Trennung der Natrium-D-Linien

Einen ersten Hinweis auf das Auflösungsvermögen unseres Spektrometers geben die beiden intensiven gelben Linien mit den gerundeten Wellenlängen von 577,0 und 579,1 Nanometern; sie werden problemlos getrennt. Schwieriger ist es schon, die sogenannten Natrium-D-Linien zu trennen. Es handelt sich hierbei um zwei dicht beieinander liegende Linien im Spektrum von Natrium mit den Wellenlängen λ1 = 589,0 Nanometer und λ2 = 589,6 Nanometer. Zum Spektroskopieren von Natrium wird die Flamme eines in der Küche gebräuchlichen Flambierbrenners auf einen mit Salzwasser getränkten Docht gerichtet. Von dem durch Natrium intensiv gelb gefärbten Licht der Flamme wird ein Spektrum aufgenommen. Man erkennt die beiden Natrium-D-Linien, deren Breite hier etwas kleiner ist als ihr von Mitte zu Mitte gemessener Abstand. Mit dem Wellenlängenunterschied von 0,6 Nanometern ist für unser Spektrometer die Grenze der spektralen Auflösung fast erreicht. Dies bedeutet, dass sein Auflösungsvermögen ungefähr den Wert 1.000 hat. Mit einem Spektrometer dieser Qualität sind Schülerinnen und Schüler gut gerüstet für eigenständige Experimente im naturwissenschaftlichen Unterricht.

Informationen zum Autor

Dr. Volker Martini war Lehrer für Physik und Mathematik am Ernst-Moritz-Arndt-Gymnasium in Bonn und als Fachmoderator für Physik in der Lehrerfortbildung tätig. Inzwischen ist er pensioniert.

Themenportal
 
Verwandte Themen
 
Unsere Empfehlungen für Sie
 
Newsletter abonnieren
 
Impressum | Datenschutz | Über uns | RSS-Feeds | Seite bookmarken:  del.icio.us Yahoo! My Web google Bookmarks Digg Mister Wong OneView MerklisteEmpfehlenDruckenSeitenanfang
Nicht redaktionelle Inhalte nach § 6 TMG von anderen Anbietern als Lehrer-Online werden durch den Namen des Anbieters gekennzeichnet.