Vermessung der Absorptionslinien im Wega-Spektrum

Verfahrensweise und Ergebnisse werden ausführlich vorgestellt und diskutiert. Alle Materialien zur Unterrichteinheit können Sie hier einzeln herunterladen.

Gewinnung der Spektren

Aufnahme des Wega-Spektrums

Die dieser Unterrichtseinheit zugrunde liegenden Spektren der Wega und einer Energiesparlampe wurden mit einem DADOS-Spektrographen der Firma Baader-Planetarium am C8-Teleskop der Schulsternwarte der Geschwister-Scholl-Realschule in Betzdorf gewonnen. Die Methode der Technik der Gewinnung von Spektren als Bilddateien wird ausführlich in der Unterrichtseinheit Spektroskopie an galaktischen Gasnebeln beschrieben. Nachdem das Spektrum der Wega (Abb. 7) zur Verfügung steht, stellt sich die Frage, welche Lichtwellenlänge von welchem Ort im Bild des Spektrums repräsentiert wird. Zur Beantwortung dieser Frage muss der Spektrograph kalibriert (geeicht) werden.

Spektrum des Sterns Wega
+ Abb. 7: Spektrum des Sterns Wega
Referenzspektrum der Energiesparlampe
+ Abb. 8: ESL-Referenz

Eine Energiesparlampe als Kalibrierlichtquelle

Als so genannte Kalibrierlichtquelle verwendet man eine externe Lichtquelle, die hinreichend viele und möglichst genau bekannte Wellenlängen emittiert, die über das gesamte sichtbare Spektrum verteilt sind. Diese Anforderungen erfüllen handelsübliche und preiswerte Energiesparlampen. Diese benötigen im Gegensatz zu den üblicherweise in Physiksammlungen vorhandenen Spektrallampen weder Vorschaltgeräte noch eine Hochspannungsversorgung. Auch das Problem der Erhitzung spielt keine Rolle. Energiesparlampen sind also auch in einer beengten Sternwarte problemlos und gefahrlos zu betreiben. Steffen Urban hat das Referenzspektrum einer Energiesparlampe (ESL) im Rahmen seiner Facharbeit mit großer Genauigkeit vermessen (Abb. 8). Die Fehler bei den Wellenlängenwerten liegen typischerweise um 0,1 Nanometer.

  • Erster Schritt: Das Spektrum der Kalibrierlampe

    Zu Beginn wird der Spektrograph auf der Grundlage des bekannten Spektrums einer Energiesparlampe (siehe Abb. 8) kalibriert. Wir wählen dazu das untere der drei Spektren im Bild "spektrum_ESL.jpg", das (genau wie das Wega-Spektrum im Bild "spektrum_wega.jpg") mit dem 35 Mikrometer breiten Spalt des DADOS-Spektrographen aufgenommen wurde. Nun gilt es, mithilfe des Programms Astroart und einer Tabellenkalkulationssoftware (hier MS Excel) daraus ein Intensitätsprofil längs einer Strecke durch das Spektrum zu erstellen. Die kostenfreie Demoversion von Astroart reicht für unsere Zwecke aus. Als Endergebnis der Prozedur entsteht ein Diagramm, wie es in Abb. 9 in den Spalten D bis G (oben) zu sehen ist. Abb. 9 zeigt einen Screenshot der Exceldatei "wega_muster_auswertung.xls".
  • Zweiter Schritt: Die Kalibrierfunktion

    Auf der Erzeugung des Intensitätsprofils des Kalibrierlampen-Spektrums folgt die Ermittlung der Kalibrierfunktion, die jeder Pixelnummer aus Spalte A in Abb. 9 eine Wellenlänge zuordnet. Dabei entsteht die rote Wertetabelle der Kalibrierfunktion in den Spalten P und Q von Abb. 9. Zu dieser Tabelle erstellt man dann ein Diagramm (unteres Diagramm in den Spalten D bis G, Abb. 9).
  • Dritter Schritt: Das Wega-Spektrum

    Wie oben für das Energiesparlampen-Spektrum beschrieben, verfährt man nun mit dem Wega-Spektrum (Datei "spektrum_wega.jpg"). In Astroart wird von dem Spektrum ein Profil mit den gleichen Endpunkten wie zuvor beim Energiesparlampen-Spektrum erzeugt. Vom Spektrum der Wega liegt dann eine Funktion vor, die jeder Pixelnummer die entsprechende Intensität zuordnet. Mithilfe der im zweiten Schritt gewonnenen Kalibrierfunktion werden dann die Pixelnummern durch Wellenlängen ersetzt. Aus den Spalten J und I (Abb. 9) entsteht schließlich das Wega-Spektrum in seiner endgültigen Form (Spalten L bis O, unteres Bild in Abb. 9).
Materialien
Download

Endergebnis

Aus dem Intensitätsprofil des Wega-Spektrums lokalisiert man die ungefähre Lage der drei auffallenden Absorptionslinien. Die Intensitätswerte aus Spalte I in Abb. 9 helfen bei der genauen Festlegung der Intensitätsminima. Das Verfahren ist bei der Ermittlung der Linienmaxima im Energiesparlampen-Spektrum ausführlich beschrieben. Abb. 10 zeigt die Ergebnisse dieser Prozedur und gleichzeitig eine Möglichkeit, die Daten anschaulich darzustellen. Unter den von uns gemessenen Wellenlängen der Absorptionslinien sind die Literaturwerte ergänzt. Die in der Literatur als sichtbar beschriebenen Balmerlinien H-delta (410,2 Nanometer) und H-epsilon (397,0 Nanometer) fehlen hier. Ursache ist ein UV-Sperrfilter vor dem Sensor der verwendeten Kamera. Dieser blockiert sämtliches Licht mit Wellenlängen unter 415 Nanometern.

Das Spektrum der Wega (Intensitätsprofil)
+ Abb. 10: Das Spektrum der Wega, gemessene Werte und Literaturangaben

Man erkennt die drei Absorptionslinien H-alpha, H-beta und H-gamma der Balmerserie (vergleiche Abb. 1). Damit ist zum Beispiel nachgewiesen, dass die Atmosphäre der Wega größere Mengen an atomarem Wasserstoff enthält. Außerdem kann man daraus schließen, dass diese Wasserstoffatome vergleichsweise hohe Temperaturen haben. Atome, die Licht der Balmerwellenlängen absorbieren, müssen sich im "ersten angeregten Energiezustand" (Quantenzahl n = 2) befinden. Dieser ist nur bei hohen Temperaturen ausreichend besetzt.

Fazit

Wega - ein geeignetes Objekt für den Einstieg in die Spektroskopie

Für eine erste Betrachtung des Spektrums eines Himmelsobjekts eignet sich das Spektrum der Wega besonders gut. Da es im sichtbaren Bereich nur die Linien der Balmerserie zeigt, ist es auch für Anfänger auf dem Gebiet der Spektroskopie leicht zu überschauen und zu interpretieren.

Abweichung von den Literaturwerten

Die in unserer Musterauswertung (siehe Abb. 9) ermittelten Wellenlängen der Absorptionslinien im Wega-Spektrum (Abb. 10) weichen von den Literaturwerten um etwa ein Nanometer ab. Ein Grund dafür ist der Umstand, dass wir uns bei der Festlegung der Orte der Spektrallinien - sowohl im Kalibrier-, als auch im Wega-Spektrum - auf ganzzahlige Pixelwerte beschränkt haben. Wer bereit ist, mehr Aufwand zu betreiben, kann die Linienorte in den Spektren durch Betrachtung der jeweiligen Linienprofile auf etwa 0,1 Pixel genau festlegen und die Abweichungen von den Literaturwerten damit nennenswert reduzieren. (Informationen zur Vorgehensweise finden Sie in der Unterrichtseinheit "Spektroskopie an galaktischen Gasnebeln" im Abschnitt Spektren planetarischer Nebel.) Eine weitere Fehlerursache liegt darin, dass die Funktion "Trendlinie" in Excel, die die Kalibrierfunktion liefert, die Koeffizienten der Terme zweiter und höherer Ordnungen nur auf eine geltende Ziffer genau angibt. Mit anderer Software (zum Beispiel dem Open-Source-Programm Qtiplot) sind exaktere Kalibrierfunktionen konstruierbar.

  • Wikipedia: QtiPlot
    QtiPlot ist ein Open-Source-Programm zur Analyse und Visualisierung von Daten.

Steffen Urban ist Schüler der Jahrgangstufe 12 am Kopernikus-Gymnasium Wissen. In seiner Facharbeit beschäftigte er sich mit der Kalibrierung des DADOS-Spaltspektrographen.

Autor
Avatar Peter Stinner

Zum Autoren-Profil

Frei nutzbares Material
Die von Lehrer-Online angebotenen Materialien können frei für den Unterricht genutzt und an die eigene Zielgruppe angepasst werden.