Fachliche Grundlagen: Wasserstoffspektrum & Spektralklassen der Sterne

Zum Verständnis des Wega-Spektrums ist die Kenntnis der Theorie zur Lichtabsorption und -emission in Atomen, speziell im Wasserstoffatom, erforderlich. Auch die Einteilung der Sterne in Spektralklassen sollte bekannt sein.

Das Wasserstoffspektrum

Das Bohrsche Atommodell

Nach dem Bohrschen Atommodell gibt es für Elektronen in einem Atom oder Ion verschiedene diskrete Energieniveaus, so genannte Quantenzustände. Es ist nicht möglich, dass die Elektronenenergie Zwischenwerte annimmt. Niels Bohr (1885-1962) schrieb jedem dieser Zustände eine bestimmte Kreisbahn eines Elektrons um den Atomkern zu.

Energieniveaus und Spektrallinienserien des Wasserstoffatoms

Normalerweise hält sich das Elektron in einem Wasserstoffatom im Grundzustand auf (Quantenzahl: n = 1), also auf der Stufe mit der niedrigsten Energie. Der Begriff "Grundzustand" rührt daher, dass ein mittels Energiezufuhr auf einen höheren Zustand befördertes Elektron nach kurzer Zeit wieder in diesen Grundzustand zurückfällt. Theoretisch gibt es in einem Atom unendlich viele Quantenzustände für Elektronen, deren Energiedifferenzen mit größeren Quantenzahlen jedoch immer geringer werden, und deren Energien gegen einen bestimmten Wert, die Ionisationsgrenze, konvergieren.

Wenn man die Gesamtenergie eines Elektrons im Wasserstoffatom an der Ionisierungsgrenze zu Null Elektronenvolt (eV) festlegt, dann hat es im Grundzustand eine Energie von -13,6 Elektronenvolt. Zur Ionisierung eines Wasserstoffatoms im Grundzustand ist also eine Mindestenergie von 13,6 Elektronenvolt erforderlich. Die Energieniveau-Schemata der Atome anderer Elemente sind deutlich komplizierter. Allen gemeinsam ist aber das Auftreten von diskreten Energieniveaus.

Aufnahme und Abgabe von Energie in einem Atom

Der Wechsel eines Elektrons zwischen zwei diskreten Energiestufen ist mit der Aufnahme oder der Abgabe von Energie verbunden. Dies erfolgt entweder strahlungslos durch eine Kollision mit einem anderen Teilchen, oder aber durch Absorption (Energie wird aufgenommen) oder Emission (Energie wird abgegeben) eines Lichtquants, eines so genannten Photons, der Energie W = h•f. Die Vorgänge der Aufnahme und Abgabe von Energie in einem Atom durch Elektronensprünge ("Quantensprünge") illustriert Abb. 2.

Neben den im Wasserstoffatom existierenden Energiezuständen zeigt Abb. 1 auch, welche Übergänge zwischen solchen Zuständen möglich sind, das heißt welche Spektrallinien im Wasserstoffspektrum zu erwarten sind. Im sichtbaren Bereich des Spektrums liegen dabei ausschließlich Linien der Balmerserie. Damit Linien dieser Serie emittiert werden können, müssen Wasserstoffatome sich in einem Quantenzustand mit n = 3 oder höher befinden. Linien der Balmerserie treten im Absorptionsspektrum von Wasserstoff nur dann auf, wenn hinreichend viele Atome sich im Zustand mit n = 2 aufhalten. Wann und warum diese Bedingung von Sternen erfüllt wird, wird im Folgenden erläutert.

Die Spektralklassen der Sterne

Planck-Funktion und Absorptionsspektren

Sterne existieren in einem sehr großen Oberflächen-Temperaturbereich von etwa 3.000 Kelvin bis über 100.000 Kelvin, wobei die Sonne an der Oberfläche etwa 6.000 Kelvin heiß ist. Sterne strahlen ihre Energie gemäß der Planck-Funktion ab, die in Abb. 3 (zur Vergrößerung bitte anklicken) logarithmisch dargestellt ist. Die Kurvenform ist temperaturunabhängig, die Maxima verschieben sich mit steigender Temperatur nach links. Dadurch erscheinen kühlere Sterne rötlich, heiße Sterne sind bläulich. Betrachtet man neben der spektralen Verteilung der abgestrahlten Energie die Spektren verschiedener Sterne, so erscheint die Situation auf den ersten Blick deutlich unübersichtlicher. Abb. 4 zeigt Spektren von sieben verschiedenen Sternen. Man erkennt, dass alle diese Spektren Absorptionsspektren sind, das heißt in einem eigentlich kontinuierlichem Spektrum fehlt Licht diverser diskreter Wellenlängen. Die dunklen Linien in den Spektren nennt man Absorptionslinien, da Licht der entsprechenden Farbe beziehungsweise Wellenlänge in den Sternatmosphären absorbiert wird.

Spektraltypen

Die Klassifizierung der Sterne in Spektraltypen erfolgte anfänglich nur anhand von Merkmalen im Spektrum. So nimmt die Intensität mancher Absorptionslinien von einer Klasse zur nächsten manchmal zu oder auch ab. Später erkannte man, dass die Oberflächentemperatur eines Sterns für das Aussehen seines Spektrums verantwortlich ist. Die Spektralklassen wurden in eine Temperatursequenz umgeordnet (Abb. 5), wobei die Oberflächentemperaturen von der Spektralklasse O (für ganz heiße Sterne mit etwa 30.000 bis 50.000 Kelvin Temperatur) über B, A, F, G und K bis hin zu M (etwa 2.000 bis 3.350 Kelvin) abnehmen. Das Merken dieser Reihenfolge erleichtert der Satz "O B*e *A* *F*ine *G*irl, *Kiss Me!". Der Vollständigkeit halber sei erwähnt, dass die Spektralklassensequenz in jüngerer Zeit um die Klassen L und T für Zwergsterne erweitert wurde.

Eigenschaften der Spektralklassen

In den Atmosphären sehr heißer Sterne der Spektralklassen O, B und A können keine Moleküle existieren. Die heftige thermische Bewegung der beteiligten Atome würde jegliche chemische Bindung sprengen. Auf weniger heißen Sternen der Klassen K und M existieren Moleküle. Deren Spektrallinien tauchen als Absorptionslinien in den Spektren auf und machen diese recht unübersichtlich. In K- und M-Spektren gibt es im sichtbaren Wellenlängenbereich keine Linien aus Atomspektren. Die Elektronenhüllen aller Atome befinden sich im energetischen Grundzustand, und alle Absorptionslinien, die durch Lichtabsorption eines Atoms im Grundzustand zustande kommen können, liegen im ultravioletten Bereich. Dagegen ist die Situation bei den heißen Sternen anders gelagert: Die aufgrund ihrer Wärmebewegung große kinetische Energie der Atome führt bei Stößen der Atome untereinander zur Beförderung der Elektronen in höher gelegene Quantenzustände. Derart "angeregte" Atome absorbieren, wie oben erläutert, auch sichtbares Licht.

Das Wega-Spektrum

Beim Stern Wega (Spektralklasse A) ist die Situation besonders übersichtlich: Das Spektrum enthält im Sichtbaren ausschließlich Absorptionslinien, die zur Balmerserie des atomaren Wasserstoffs gehören. Die Oberflächentemperatur des Sterns und damit die Bewegungsenergie der Wasserstoffatome in der Sternatmosphäre sind nämlich groß genug, dass ständig viele Wasserstoffatome durch Stöße untereinander in den Quantenzustand mit n = 2 gelangen. Damit sind die Bedingungen für das Auftreten sichtbarer Absorptionslinien gegeben (vergleiche Abb. 1).

Fachlicher Kommentar - Download

Autor

Avatar
Peter Stinner

Zum Autoren-Profil

Frei nutzbares Material
Die von Lehrer-Online angebotenen Materialien können frei für den Unterricht genutzt und an die eigene Zielgruppe angepasst werden.